Что выпуклый многоугольник. Многоугольник, выпуклый многоугольник, четырехугольник

В 8 классе на уроках геометрии в школе ученики впервые знакомятся с понятием выпуклого многоугольника. Очень скоро они узнают, что эта фигура обладает очень интересным свойством. Какой бы сложной она ни была, сумма всех внутренних и внешних углов выпуклого многоугольника принимает строго определенное значение. В данной статье репетитор по математике и физике рассказывает о том, чему равна сумма углов выпуклого многоугольника.

Сумма внутренних углов выпуклого многоугольника

Как доказать эту формулу?

Прежде чем перейти к доказательству этого утверждения, вспомним, какой многоугольник называется выпуклым. Выпуклым называется такой многоугольник, который целиком находится по одну сторону от прямой, содержащей любую его сторону. Например такой, который изображен на этом рисунке:

Если же многоугольник не удовлетворяет указанному условию, то он называется невыпуклым. Например, такой:

Сумма внутренних углов выпуклого многоугольника равна , где — количество сторон многоугольника.

Доказательство этого факта основано на хорошо известной всем школьникам теореме о сумме углов в треугольнике. Уверен, что и вам эта теорема знакома. Сумма внутренних углов треугольника равна .

Идея состоит в том, чтобы разбить выпуклый многоугольник на несколько треугольников. Сделать это можно разными способами. В зависимости от того, какой способ мы выберем, доказательства будут немного отличаться.

1. Разобьём выпуклый многоугольник на треугольники всеми возможными диагоналями, проведёнными из какой-нибудь вершины. Легко понять, что тогда наш n-угольник разобьётся на треугольника:

Причём сумма всех углов всех получившихся треугольников равна сумме углов нашего n-угольника. Ведь каждый угол в получившихся треугольниках является частичной какого-то угла в нашем выпуклом многоугольнике. То есть искомая сумма равна .

2. Можно также выбрать точку внутри выпуклого многоугольника и соединить её со всеми вершинами. Тогда наш n-угольник разобьется на треугольников:

Причём сумма углов нашего многоугольника в этом случае будет равна сумме всех углов всех этих треугольников за вычетом центрального угла, который равен . То есть искомая сумма опять же равна .

Сумма внешних углов выпуклого многоугольника

Зададимся теперь вопросом: «Чему равна сумма внешних углов выпуклого многоугольника?» Ответить на этот вопрос можно следующим образом. Каждый внешний угол является смежным с соответствующим внутренним. Поэтому он равен :

Тогда сумма всех внешних углов равна . То есть она равна .

То есть получается весьма забавный результат. Если отложить последовательно друг за другом все внешние углы любого выпуклого n-угольника, то в результате заполнится ровно вся плоскости.

Этот интересный факт можно проиллюстрировать следующим образом. Давайте пропорциональном уменьшать все стороны какого-нибудь выпуклого многоугольника до тех пор, пока он не сольётся в точку. После того, как это произойдёт, все внешние углы окажутся отложенными один от другого и заполнят таким образом всю плоскость.

Интересный факт, не правда ли? И таких фактов в геометрии очень много. Так что учите геометрию, дорогие школьники!

Материал о том, чему равна сумма углов выпуклого многоугольника, подготовил , Сергей Валерьевич

Определение выпуклости многоугольника.

Алгоритм Кируса–Бэка предполагает наличие выпуклого многоугольника, используемого в качестве окна.

Однако на практике весьма часто возникает задача отсечения многоугольником, а информация о том, является он выпуклым или нет изначально не задается. В таком случае, прежде чем начать процедуру отсечения необходимо определить какой задан многоугольник – выпуклый или нет.

Дадим некотрые определения выпуклости многоугольника

Выпуклым считается многоугольник, для которого выполняется одно из ниже перечисленных условий:

1)в выпуклом многоугольнике все вершины располагаются по одну сторону от линии, несущей любое ребро (по внутреннюю сторону относительно данного ребра);

2)все внутренние углы многоугольника меньше 180 о;

3)все диагонали, связывающие вершины многоугольника, лежат внутри этого многоугольника;

4)все углы многоугольника обходятся в одном направлении (Рис. 3.3‑1).

Для выработки аналитического представление последнего критерия выпуклости, используем векторное произведение.

Векторное произведение W двух векторов a и b (Рис. 3.3‑2 а) определяется как:


A x ,a y ,a z и b x ,b y ,b z являются проекциями на оси координат X ,Y ,Z , соответственно, векторов – сомножителей a и b ,

- i , j , k – единичные векторы по координатным осям X , Y , Z .



Рис. 3.3 1



Рис. 3.3 2

Если рассматривать двумерное представление многоугольника как представление его в координатной плоскости XY трехмерной системе координат X ,Y ,Z (Рис. 3.3‑2 b ), то выражение для формирования векторного произведения векторов U и V , где векторы U и V являются соседними ребрами, образующими угол многоугольника, можно записать в виде определитель:

Вектор векторного произведения перпендикулярен плоскости, в которой находятся вектора-сомножители. Направление вектора произведения определяется по правилу буравчика или по правилу винта с правой нарезкой.

Для случая, представленного на Рис. 3.3‑2 b ), вектор W , соответствующий векторному произведению векторов V , U , будет иметь ту же направленность, что и направленность координатной оси Z .

Учитывая то, что проекции на ось Z векторов –сомножителей в этом случае равны нулю, векторное произведение можно представить в виде:


(3.3-1)

Единичный вектор k всегда положительный, следовательно, знак вектора w векторного произведения будет определяться только знаком определителя D в выше приведенном выражении. Отметим, что на основании свойства векторного произведения, при перестановке местами векторов-сомножителей U и V знак вектора w будет меняться на противоположный.

Отсюда следует, что, если в качестве векторов V и U рассматривать два соседних ребра многоугольника, то порядок перечисления векторов в векторном произведении можно поставить в соответствие c обходом рассматриваемого угла многоугольника или ребер, образующих этот угол. Это позволяет использовать в качестве критерия определения выпуклости многоугольника правило:

если для всех пар ребер многоугольника выполняется условие:



Если знаки векторных произведений для отдельных углов не совпадают, то многоугольник не выпуклый.

Так как ребра многоугольник задаются в виде координат их концевых точек, то для определения знака векторного произведения удобнее использовать определитель.

Выпуклое множество точек на плоскости.

Множество точек на плоскости или в трехмерном пространстве называется выпуклым , если любые две точки этого множества можно соединить отрезком прямой, полностью лежащим в данном множестве.

Теорема 1 . Пересечение конечного числа выпуклых множеств является выпуклым множеством.

Следствие. Пересечение конечного числа выпуклых множеств – выпуклое множество.

Угловые точки.

Граничная точка выпуклого множества называется угловой , если через нее можно провести отрезок, все точки которого не принадлежат данному множеству.

Различные по форме множества могут иметь конечное или бесконечное количество угловых точек.

Выпуклый многоугольник.

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

6) Решение систем m линейных неравенств с двумя переменными

Дана система т линейных неравенств с двумя переменными

Знаки некоторых или всех неравенств могут быть ≥.

Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую

которая является граничной прямой.

Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).

Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.

Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.

Направление полуплоскости на рисунках показываем стрелкой.

Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).

Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j =), называется областью неотрицательных, или допустимых, решений (ОДР).

Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.

Если система неравенств несовместна, то ОР и ОДР - пустое множество.

Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР

Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3. Построим граничную прямую х1 +3x2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).


Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7).

Точку В найдем как точку пересечения прямых

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Пример 2. Найти ОР и ОДР системы неравенств

Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).

Пример 3. Найти ОР и ОДР системы неравенств

Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР - точка В.

Пример 4. Найти OP и ОДР системы неравенств

Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).

УПРАЖНЕНИЯ

Найти ОР и ОДР систем неравенств

Теорема. Если xn ® a, то .

Доказательство. Из xn ® a следует, что . В то же время:

Т.е. , т.е. . Теорема доказана.

Теорема. Если xn ® a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предела, хотя

Разложение функций в степенные ряды.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Итого, получаем:

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции и интегрируем его в пределах от 0 до х.

Понятие многоугольника

Определение 1

Многоугольником называется геометрическая фигура в плоскости, которая состоит из попарно соединенных между собой отрезков, соседние из которых не лежат на одной прямой.

При этом отрезки называются сторонами многоугольника , а их концы - вершинами многоугольника .

Определение 2

$n$-угольником называется многоугольник, у которого $n$ вершин.

Виды многоугольников

Определение 3

Если многоугольник всегда будет лежать по одну сторону от любой прямой, проходящей через его стороны, то многоугольник называется выпуклым (рис. 1).

Рисунок 1. Выпуклый многоугольник

Определение 4

Если многоугольник лежит по разные стороны хотя бы одной прямой, проходящей через его стороны, то многоугольник называется невыпуклым (рис. 2).

Рисунок 2. Невыпуклый многоугольник

Сумма углов многоугольника

Введем теорему о сумме углов -угольника.

Теорема 1

Сумма углов выпуклого -угольника определяется следующим образом

\[(n-2)\cdot {180}^0\]

Доказательство.

Пусть нам дан выпуклый многоугольник $A_1A_2A_3A_4A_5\dots A_n$. Соединим его вершину $A_1$ со всеми другими вершинами данного многоугольника (рис. 3).

Рисунок 3.

При таком соединении мы получим $n-2$ треугольника. Просуммировав их углы мы получим сумму углов данного -угольника. Так как сумма углов треугольника равняется ${180}^0,$ получим, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Теорема доказана.

Понятие четырехугольника

Используя определение $2$, легко ввести определение четырехугольника.

Определение 5

Четырехугольником называется многоугольник, у которого $4$ вершины (рис. 4).

Рисунок 4. Четырехугольник

Для четырехугольника аналогично определены понятия выпуклого четырехугольника и невыпуклого четырехугольника. Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм (рис. 5).

Рисунок 5. Выпуклые четырехугольники

Теорема 2

Сумма углов выпуклого четырехугольника равняется ${360}^0$

Доказательство.

По теореме $1$, мы знаем, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Следовательно, сумма углов выпуклого четырехугольника равняется

\[\left(4-2\right)\cdot {180}^0={360}^0\]

Теорема доказана.

Выпуклый четырехугольник — это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Вконтакте

Как видно, определение довольно легко запоминающееся.

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

  1. параллелограмм;
  2. квадрат;
  3. прямоугольник;
  4. трапеция;
  5. ромб.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция . Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка . Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Выше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым . Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат — это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам . Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются . Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Конкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

  1. сумма углов четырехугольника равна 360 градусам;
  2. диагонали фигур пересекаются в одной точке.

Прямоугольник . Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название — прямоугольник.

Квадрат, тот же параллелограмм , но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция — очень интересная фигура . Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб — не менее интересная фигура . Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Виды выпуклых четырехугольников