Дрейф заряженных частиц. Движение в неоднородном магнитном поле

В астрофизических и термоядерных задачах значительный интерес представляет поведение частиц в магнитном поле, меняющемся в пространстве. Часто это изменение достаточно слабое, и хорошим приближением является решение уравнений движения методом возмущений, впервые полученное Альфвеном. Термин «достаточно слабое» означает, что расстояние, на котором В существенно изменяется по величине или по направлению, велико по сравнению с радиусом а вращения частицы. В этом случае в нулевом приближении можно считать, что частицы движутся по спирали вокруг силовых линий магнитного поля с частотой вращения, определяемой

локальной величиной магнитного поля. В следующем приближении появляются медленные изменения орбиты, которые можно представить в виде дрейфа их ведущего центра (центра вращения).

Первым типом пространственного изменения поля, которое мы рассмотрим, является изменение в направлении, перпендикулярном В. Пусть имеется градиент величины поля в направлении единичного вектора , перпендикулярного В, так что . Тогда в первом приближении частоту вращения можно записать в виде

здесь - координата в направлении и разложение производится в окрестности начала координат, для которого Поскольку В не меняется по направлению, движение вдоль В остается равномерным. Поэтому мы рассмотрим только изменение поперечного движения. Записав в виде , где - поперечная скорость в однородном поле, a -малая поправка, подставим (12.102) в уравнение движения

(12.103)

Тогда, удерживая только члены первого порядка, получаем приближенное уравнение

Из соотношений (12.95) и (12.96) вытекает, что в однородном поле поперечная скорость и координата связаны соотношениями

(12.105)

где X - координата центра вращения в невозмущенном круговом движении (здесь Если в (12.104) выразить через то получим

Это выражение показывает, что, помимо осциллирующего слагаемого, имеет отличное от нуля среднее значение, равное

Для определения средней величины достаточно учесть, что декартовы составляющие изменяются синусоидально с амплитудой а и сдвигом фазы 90°. Поэтому на среднее значение влияет лишь составляющая параллельная , так что

(12.108)

Таким образом, «градиентная» дрейфовая скорость дается выражением

(12.109)

или в векторной форме

Выражение (12.110) показывает, что при достаточно малых градиентах поля, когда дрейфовая скорость мала по сравнению с орбитальной скоростью .

Фиг. 12.6. Дрейф заряженных частиц, обусловленный поперечным градиентом магнитного поля.

При этом частица быстро вращается вокруг ведущего центра, который медленно движется в направлении, перпендикулярном В и grad В. Направление дрейфа положительной частицы определяется выражением (12.110). Для отрицательно заряженной частицы дрейфовая скорость имеет противоположный знак; это изменение знака связано с определением Градиентный дрейф можно качественно объяснить, рассматривая изменение радиуса кривизны траектории при движении частицы в областях, где величина напряженности поля больше и меньше средней. На фиг. 12.6 качественно показано поведение частиц с различными знаками заряда.

Другим типом изменения поля, приводящим к дрейфу ведущего центра частицы, является кривизна силовых линий. Рассмотрим изображенное на фиг. 12.7 двумерное поле, не зависящее от . На фиг. 12.7, а показано однородное магнитное поле параллельное оси Частица вращается вокруг силовой линии по окружности радиусом а со скоростью и одновременно движется с постоянной скоростью вдоль силовой линии. Мы будем рассматривать это движение в качестве нулевого приближения для движения частицы в поле с искривленными силовыми линиями, показанном на фиг. 12.7,б, где локальный радиус кривизны силовых линий R велик по сравнению с а.

Фиг. 12.7. Дрейф заряженных частиц, обусловленный кривизной силовых линий. а - в постоянном однородном магнитном поле частица движется по спирали вдоль силовых линий; б - кривизна силовых линий магнитного поля вызывает дрейф, перпендикулярный плоскости

Поправку первого приближения можно найти следующим образом. Поскольку частица стремится двигаться по спирали вокруг силовой линии, а силовая линия изогнута, то для движения ведущего центра это эквивалентно появлению центробежного ускорения Можно считать, что это ускорение возникает под действием эффективного электрического поля

(12.111)

как бы добавленного к магнитному полю . Но, согласно (12.98), комбинация такого эффективного электрического поля и магнитного поля приводит к центробежному дрейфу со скоростью

(121,2)

Используя обозначение запишем выражение для скорости центробежного дрейфа в виде

Направление дрейфа определяется векторным произведением, в котором R представляет собой радиус-вектор, направленный от центра кривизны к точке нахождения частицы. Знак в (12.113) соответствует положительному заряду частицы и не зависит от знака Для отрицательной частицы величина становится отрицательной и направление дрейфа меняется на обратное.

Более аккуратный, но менее изящный вывод соотношения (12.113) можно получить непосредственным решением уравнений движения. Если ввести цилиндрические координаты с началом координат в центре кривизны (см. фиг. 12.7,б), то магнитное поле будет иметь только -составляющую Легко показать, что векторное уравнение движения сводится к следующим трем скалярным уравнениям:

(12-114)

Если в нулевом приближении траектория представляет собой спираль с радиусом а, малым по сравнению с радиусом кривизны то в низшем порядке Поэтому из первого уравнения (12.114) получаем следующее приближенное выражение гаусс частицы плазмы с температурой имеют дрейфовую скорость см/сек. Это означает, что за малую долю секунды они вследствие дрейфа выйдут на стенки камеры. Для более горячей плазмы скорость дрейфа соответственно еще больше. Одним из способов компенсации дрейфа при тороидальной геометрии является изгибание тора в виде восьмерки. Так как частица обычно совершает много оборотов внутри такой замкнутой системы, то она проходит области, где как кривизна, так и градиент имеют различные знаки, и дрейфует поочередно в различных направлениях. Поэтому по крайней мере в первом порядке по результирующий средний дрейф оказывается равным нулю. Такой метод исключения дрейфа, обусловленного пространственным изменением магнитного поля, применяется в термоядерных установках типа стелларатора. Удержание плазмы в таких установках в отличие от установок, использующих пинч-эффект (см. гл. 10, § 5-7), осуществляется с помощью сильного внешнего продольного магнитного поля.

Дрейф заряженных частиц, относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на основное движение. Так, например, при прохождении электрического тока через ионизованный газ электроны, помимо скорости их беспорядочного теплового движения, приобретают небольшую скорость, направленную вдоль электрического поля. В этом случае говорят о токовой дрейфовой скорости. Вторым примером может служить Д. з. ч. в скрещённых полях, когда на частицу действуют взаимно перпендикулярные электрическое и магнитное поля. Скорость такого дрейфа численно равна cE/H , где с - скорость света, Е - напряжённость электрического поля в СГС системе единиц , Н - напряжённость магнитного поля в эрстедах . Эта скорость направлена перпендикулярно к Е и Н и накладывается на тепловую скорость частиц.

Л. А. Арцимович.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Читайте также в БСЭ:

Дрейф льда
Дрейф льда в море, движение льда, вызываемое ветрами и течениями. Многочисленные наблюдения за Д. л. в Северном Ледовитом океане показали, что его скорость зависит от скорости ветра, а д...

Дрейф нулевого уровня
Дрейф нулевого уровня в аналоговой вычислительной машине, медленное изменение напряжения, принятого за нулевое, на выходе решающего усилителя в отсутствие входного сигнала. Д. н. у. обус...

Дрейфовый транзистор
Дрейфовый транзистор, транзистор, в котором движение носителей заряда вызывается главным образом дрейфовым полем. Это поле создаётся неравномерным распределением примесей в базовой облас...

Лекция № 3. ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дреЛекция № 3.
ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ
Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости,
дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант.
Движение в скрещенных электрическом и магнитном полях.
Движение в скрещенных однородных E H полях.
Дрейфовое приближение применимо в случае, если можно выделить
некоторую одинаковую для всех частиц одного сорта постоянную скорость
дрейфа, не зависящую от направления скоростей частиц. Магнитное поле не
влияет на движение частиц в направлении магнитного поля. Поэтому скорость
дрейфа может быть направлена только перпендикулярно магнитному полю.
E H
Vдр c
H2
- скорость дрейфа.
Условие применимости дрейфового движения E H
в полях:
E
V
H
c
Для определения возможных траекторий заряженных частиц в полях рассмотрим
уравнение движения для вращающейся компоненты скорости:
. q
mu
c
u H

В плоскости скоростей (Vx, Vy) можно
выделить четыре области характерных
траекторий.
Область 1. Круг, описываемый
неравенством 0 u Vдр в координатах
(x,y) соответствует трохоиде без петель
(эпициклоида) с «высотой», равной, 2 re
где re u / л
Область 2. Окружность, задаваемая
уравнением u Vдр, соответствует
циклоиде. При вращении вектора
вектор скорости на каждом периоде
будет проходит через начало координат,
то есть, скорость будет равна нулю.
Область 3. Область вне круга,
соответсвует трохоиде с петлями
(гипоциклоида).
V
Vy
0
V др
u
Vx
1
2
3
Области характерных траекторий в
плоскости скоростей.
e
E
i
H
1
e
2
i
e
3
i
Область 4: Точка
V0 Vдр
- прямой.
4

В случае невыполнения условия дрейфового приближения, то есть при или при действие электрического поля не компенсируется действием магни

В случае невыполнения условия дрейфового приближения, то есть при или
при E H действие электрического поля не компенсируется действием
магнитного, поэтому частица переходит в режим непрерывного
E H
ускорения
H
y
e
x
H
e
E
E
x
E
H
Ускорение электрона в
полях при E H
.
Ускорение электрона в полях
E H
Все выводы, сделанные выше, верны, если вместо электрической силы
использовать произвольную силу, действующую на частицу, причем F H
Скорость дрейфа в поле произвольной силы:
c F H
Vдр
q H2

Дрейфовое движение заряженных частиц в неоднородном магнитном поле.

Если магнитное поле медленно меняется в пространстве, то движущаяся
в нем частица совершит множество ларморовских оборотов, навиваясь на
силовую линию магнитного поля с медленно меняющимся ларморовским
радиусом.
Можно рассматривать движение не собственно частицы, а её
мгновенного центра вращения, так называемого ведущего центра.
Описание движения частицы как движение ведущего центра, т.е.
дрейфовое приближение, применимо, если изменение ларморовского
радиуса на одном обороте будет существенно меньше самого
ларморовского радиуса.
Это условие, очевидно, будет выполнено, если характерный
пространственный масштаб изменения полей будет значительно
превышать ларморовский радиус:
хар
lполя
что равносильно условию: rл
H
H

1.
Очевидно, это условие выполняется тем лучше, чем больше величина
напряженности магнитного поля, так как ларморовский радиус убывает
обратно пропорционально величине магнитного поля.

Рассмотрим задачу о движении
заряженной частицы в
магнитном поле со скачком,
слева и справа от плоскости
которого магнитное поле
однородно и одинаково
направлено При движении
частицы её ларморовская
окружность пересекает
плоскость скачка. Траектория
состоит из ларморовских
окружностей с переменным
ларморовским радиусом, в
результате чего происходит
«снос» частицы вдоль плоскости
скачка. Скорость дрейфа можно
определить как
l 2V H 2 H1 V H
Vдр
t
H 2 H1 H
H1 H 2
V др е
e
H
Vдр i
i

Дрейф заряженных частиц вдоль плоскости скачка магнитного поля. Градиентный дрейф.

Дрейф возникает и том случае, когда слева
и справа от некоторой плоскости магнитное
поле по величине не меняется, но изменяет
направление Слева и справа от границы
частицы вращаются по ларморовским
окружностям одинакового радиуса, но с
противоположным направлением вращения.
Дрейф возникает, когда ларморовская
окружность пересекает плоскость раздела.
Пусть пересечение плоскости слоя
частицей происходит по нормали, тогда
ларморовскую окружность следует
«разрезать» вдоль вертикального диаметра
и затем, правую половину следует отразить
зеркально вверх для электрона, и вниз для
иона, как это изображено на рисунке. При
этом за ларморовский период смещение
вдоль слоя, очевидно, составляет два
ларморовских диаметра, так что скорость
дрейфа для этого случая:
4
Vдр
H1
H2
Vдр е
H1 H 2
e
Vдр i
i
V
2rл
л 2V
T
2
2
л
Градиентный дрейф при смене
направления магнитного поля

Дрейф в магнитном поле прямого тока.

Дрейф заряженных частиц в
неоднородном магнитном поле прямого
проводника тока связан, прежде всего с
тем, что магнитное поле обратно
пропорционально расстоянию от тока,
поэтому будет существовать градиентный
дрейф движущейся в нем заряженной
частицы. Кроме этого дрейф связан с
кривизной магнитных силовых линий.
Рассмотрим две составляющие этой силы,
вызывающей дрейф, и соответственно
получим две составляющие дрейфа.
Вращающуюся вокруг силовой линии
заряженную частицу можно рассматривать
как магнитный диполь эквивалентного
кругового тока. Выражение для скорости
градиентного дрейфа можно получить из
известного выражения для силы,
действующей на магнитный диполь в
неоднородном поле:
H
F H
H
W
H
Для магнитного поля, как можно показать,
справедливо соотношение:
H
Hn
Rкр
r
b r n
i
n
Rкр
H
R
Vдр i
Vдр е
e
Диамагнитный дрейф в магнитном
поле прямого тока.
c mV 2 H H
Vдр
2
q 2H
H
2
V H H
V 2
b
2
2 л
2 л Rкр
H

Центробежный (инерционный) дрейф.

При движении частицы,
навивающейся на силовую
линию с радиусом
кривизны R, на нее
действует центробежная
mv||2
сила инерциии
Fцб
n
R
возникает дрейфовая
скорость, равная по
величине
v цб
2
2
2
mv
v
v
c
|| 1
|| | B|
e RB
R B
и направленная по
бинормали
v цб
v||2 [ B B ]
B2

Поляризационный дрейф.

Дрейф в неоднородном магнитном поле прямого проводника тока
представляет собой сумму скоростей градиентного и
V2
центробежного дрейфов (тороидальный дрейф):
Так как ларморовская частота
содержит заряд, то электроны и
ионы в неоднородном магнитном
поле дрейфуют в
противоположных направлениях,
ионы в направлении протекания
тока электроны – против тока,
создавая диамагнитный ток.
Кроме того, при разделении
зарядов в плазме возникает
электрическое поле, которое
перпендикулярно магнитному
полю. В скрещенных полях
электроны и ионы дрейфуют уже
в одном направлении то есть
происходит вынос плазмы на
стенки как целого.
H
V||2
Vдр 2
b
л Rкр
Vдр
E

10. Тороидальный дрейф и вращательное преобразование

Картина принципиально
изменится, если внутри, в центре
сечения соленоида, поместить
проводник с током, или
пропустить ток непосредственно
по плазме. Этот ток создаст
собственное магнитное поле В,
перпендикулярное к полю
соленоида Вz, так что суммарная
силовая линия магнитного поля
пойдет по винтовой траектории,
охватывающей ось соленоида.
Образование винтовых линий
магнитного поля получило
название вращательного (или
ротационного) преобразования.
Эти линии будут замыкаться
сами на себя, если коэффициент
запаса устойчивости,
представляющий собой
отношение шага винтовой
силовой линии к длине оси тора:
Bz a
q

Лекция № 3.

Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант. Движение в скрещенных электрическом и магнитном полях. Общий случай скрещенных поля любой силы и магнитного поля.

III. Дрейфовое движение заряженных частиц

§3.1. Движение в скрещенных однородных полях.

Рассмотрим движение заряженных частиц в скрещенных полях в дрейфовом приближении. Дрейфовое приближение применимо в случае, если можно выделить некоторую одинаковую для всех частиц одного сорта постоянную скорость дрейфа, не зависящую от направления скоростей частиц:
, где
- скорость дрейфа. Покажем, что это можно сделать для движения заряженных частиц в скрещенных
полях. Как было показано ранее, магнитное поле не влияет на движение частиц в направлении магнитного поля. Поэтому скорость дрейфа может быть направлена только перпендикулярно магнитному, т. е. пусть:
, причем
, где
. Уравнение движения:
(по-прежнему в СГС пишем множитель). Тогда для поперечной составляющей скорости:
, подставляем разложение через скорость дрейфа:
, т.е.
. Заменим это уравнение на два для каждой компоненты и с учетом
, т.е.,
, получим уравнение для скорости дрейфа:
. Домножим векторно на магнитное поле, получим:
. С учетом правила, получим
, откуда:

- скорость дрейфа. (3.1)

.

Скорость дрейфа не зависит от знака заряда и от массы, т.е. плазма смещается как целое. Из соотношения (3.1) видно, что при
скорость дрейфа становится больше скорости света, а значит, теряет смысл. И дело не в том, что необходимо учитывать релятивистские поправки. При
будет нарушено условие дрейфового приближения. Условие дрейфового приближения для дрейфа заряженных частиц в магнитном поле заключается в том, что влияние силы, вызывающей дрейф, должно быть незначительно в течение периода обращения частицы в магнитном поле, только в этом случае скорость дрейфа будет постоянна. Это условие можно записать в виде:
, откуда получим условие применимости дрейфового движения в
полях:
.

Для определения возможных траекторий заряженных частиц в
полях рассмотрим уравнение движения для вращающейся компоненты скорости:
, откуда
. Пусть плоскость (x ,y ) перпендикулярна магнитному полю. Векторвращается с частотой
(электрон и ион вращаются в разные стороны) в плоскости (x ,y ), оставаясь постоянным по модулю.

Если начальная скорость частицы попадет в этот круг, то частица будет двигаться по эпициклоиде.

Область 2. Окружность, задаваемая уравнением
, соответствует циклоиде. При вращении векторавектор скорости на каждом периоде будет проходит через начало координат, то есть, скорость будет равна нулю. Эти моменты соответсвуют точкам в основании циклоиды.Траектория аналогична той, что описывает точка, находящаяся на ободе колеса радиуса
. Высота циклоиды равна, то есть пропорциональна массе частицы, поэтому ионы будут двигаться по гораздо более высокой циклоиде, чем электроны, что не соответствует схематическому изображению на рис.3.2.

Область 3. Область вне круга, в которой
, соответсвует трохоиде с петлями (гипоциклоида), высота которой
. Петли соответствуют отрицательным значениям компоненты скорости, когда частицы движутся в обратном направлении.

Область 4: Точка
(
) соответсвует прямой. Ели запустить частицу с начальной скоростью
, то сила действие электрической и магнитной силы в каждый момент времени уравновешено, поэтому частица движется прямолинейно. Можно представить, что все эти траектории соответствуют движению точек находящихся на колесе радиуса
, поэтому для всех траекторий продольный пространственный период
. За период
для всех траекторий происходит взаимная компенсация действия электрического и магнитного поля. Средняя кинетическая энергия частицы остается постоянной
. Важно еще раз отметить, что

Рис. 3.2. Характерные траектории частиц в
полях: 1) трохоида без петель; 2) циклоида; 3) трохоида с петлями; 4) прямая.

>> Том 6 >> Глава 29. Движение зарядов в электрическом и магнитном полях

Движение в скрещенных электрическом и магнитном полях

До сих пор мы говорили о частицах, находящихся только в электрическом или только в магнитном поле. Но есть интересные эффекты, возникающие при одновременном действии обоих полей. Пусть у нас имеется однородное магнитное поле В и направленное к нему под прямым углом электрическое поле Е. Тогда частицы, влетающие перпендикулярно полю В, будут двигаться по кривой, подобной изображенной на фиг. 29.18. (Это плоская кривая, а не спираль.) Качественно это движение понять нетрудно. Если частица (которую мы считаем положительной) движется в направлении поля Е, то она набирает скорость, и магнитное поле загибает ее меньше. А когда частица движется против поля Е, то она теряет скорость и постепенно все больше и больше загибается магнитным полем. В результате же получается «дрейф» в направлении (ЕхВ).

Мы можем показать, что такое движение есть по существу суперпозиция равномерного движения со скоростью v d = E / B и кругового, т. е. на фиг. 29.18 изображена просто циклоида. Представьте себе наблюдателя, который движется направо с постоянной скоростью. В его системе отсчета наше магнитное поле преобразуется в новое магнитное поле плюс электрическое поле, направленное вниз. Если его скорость подобрана так, что полное электрическое поле окажется равным нулю, то наблюдатель будет видеть электрон, движущийся по окружности. Таким образом, движение, которое мы видим, будет круговым движением плюс перенос со скоростью дрейфа v d = E / B . Движение электронов в скрещенных электрическом и магнитном полях лежит в основе магнетронов, т. е. осцилляторов, применяемых при генерации микроволнового излучения.

Есть еще немало других интересных примеров движения частиц в электрическом и магнитном полях, например орбиты электронов или протонов, захваченных в радиационных поясах в верхних слоях стратосферы, но, к сожалению, у нас не хватает времени, чтобы заниматься сейчас еще и этими вопросами.