Как решать дробные примеры с целыми числами. Действия с дробями, правила, примеры, решения

Практически каждый пятиклассник после первого знакомства с обыкновенными дробями находится в небольшом шоке. Мало того, что нужно еще понять суть дроби, так с ними еще придется выполнять арифметические действия. После этого маленькие ученики будут систематически допрашивать своего учителя, разузнавать когда же эти дроби кончатся.

Чтобы избежать подобных ситуаций, достаточно всего лишь как можно проще объяснить детям эту нелегкую тему, а лучше в игровой форме.

Суть дроби

Перед тем, как узнать что такое дробь, ребенок должен познакомиться с понятием доля . Здесь лучше всего подойдет ассоциативный метод.

Представьте целый торт, который поделили на несколько равных частей, допустим на четыре. Тогда каждый кусочек торта, можно назвать долей. Если взять один из четырех кусков торта, то он будет одной четвертой долей.

Доли бывают разные, потому что, целое можно поделить на совершенно разное количество частей. Чем больше долей в целом, тем они меньше, и наоборот.

Чтобы доли можно было обозначить, придумали такое математическое понятие, как обыкновенная дробь . Дробь позволит нам записать столько долей, сколько потребуется.

Составными частями дроби являются числитель и знаменатель, которые разделены дробной чертой либо наклонной чертой. Многие дети не понимают их смысла, поэтому и суть дроби им не понятна. Дробная черта обозначает деление, здесь нет ничего сложного.

Знаменатель принято записывать снизу, под дробной чертой или справа от накл.черты. Он показывает количество долей целого. Числитель, он записывается сверху над дробной чертой или слева от накл.черты, определяет сколько долей взяли.К примеру дробь 4/7. В данном случае 7-это знаменатель, показывает, что есть всего 7 долей, а числитель 4 указывает на то, что из семи долей взяли четыре.

Основные доли и их запись в дробях:

Помимо обыкновеной, существует еще и десятичная дробь.

Действия с дробями 5 класс

В пятом классе учатся выполнять все арифметические действия с дробями.

Все действия с дробями выполняются по правилам, и надеяться на то, что не выучив правило все получится само сабой не стоит. Поэтому не стоит пренебрегать устной частью домашнего задания по математике.

Мы уже поняли, что запись десятичной и обыкновенной дроби различны, следовательно и арифметические действия будут выполняться по-разному. Действия с обыкновенными дробями зависят от тех чисел, которые стоят в знаменателе, а в десятичной-после запятой справа.

Для дробей, у которых знаменатели одинаковые, алгоритм сложения и вычитания очень прост. Действия выполняем только с числителями.

Для дробей с разными знаменателями нужно найти Наименьший Общий Знаменатель (НОЗ). Это то число, которое будет делиться без остатка на все знаменатели, и будет наименьшим из таких чисел, если их несколько.

Для сложения либо вычитания десятичных дробей, нужно записать их в столбик, запятая под запятой, и уравнить количество десятичных знаков если это требуется.

Чтобы перемножить обыкновенные дроби просто найди произведение числителей и знаменателей. Очень простое правило.

Деление выполняется по следующему алгоритму:

  1. Делимое записать без изменения
  2. Деление превратить в умножение
  3. Делитель перевернуть (записать обратную дробь делителю)
  4. Выполнить умножение

Сложение дробей, объяснение

Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.

Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.

Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.

Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.

Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.

Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.

Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.

Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.

Вычитание дробей, объяснение

Чтобы найти разность дробей две третьих и одна третья, нужно вычислить разность числителей 2-1 = 1, а знаменатель оставить без изменения. В ответе получаем разность одну третью.

Найдем разность дробей пять шестых и семь десятых. Находим общий знаменатель. Используем способ подбора, из 6 и 10 наибольший 10. Проверяем: 10: 6 без остатка не делится. Добавляем еще 10, получается 20:6, тоже без остатка не делится. Снова увеличиваем на 10, получили 30:6 = 5. Общий знаменатель 30. Так же НОЗ можно найти по таблице умножения.

Находим дополнительные множители. 30:6 = 5 — для первой дроби. 30:10 = 3 — для второй. Перемножаем числители и их доп.множ. Получаем уменьшаемое 25/30 и вычитаемое 21/30. Далее выполняем вычитание числителей, а знаменатель оставляем без изменения.

В результате получилась разность 4/30. Дробь сократимая. Разделим ее на 2. В ответе 2/15.

Деление десятичных дробей 5 класс

В этой теме рассматривается два варианта действий:

Умножение десятичных дробей 5 класс

Вспомните, как вы умножаете натуральные числа, точно таким же способом и находят произведение десятичных дробей. Сначала разберемся, как умножить десятичную дробь на натуральное число. Для этого:

При умножении десятичной дроби на десятичную, действуем точно также.

Смешанные дроби 5 класс

Пятиклашки любят называть такие дроби не смешанные, а <<смешные>>, наверное так легче запомнить. Смешанные дроби называются так от того, что они получились путем соединения целого натурального числа и обыкновенной дроби.

Смешанная дробь состоит из целой и дробной части.

При чтении таких дробей сначала называют целую часть, затем дробную: одна целая две третьих, две целых одна пятая, три целых две пятых, четыре целых три четвертых.

Как же они получаются, эти смешанные дроби? Все довольно просто. Когда мы получаем в ответе неправильную дробь (дробь у которой числитель больше знаменателя), мы ее должны всегда переводить в смешанную. Достаточно разделить числитель на знаменатель. Это действие называется выделением целой части:

Перевести смешанную дробь обратно в неправильную тоже несложно:


Примеры с десятичными дробями 5 класс с объяснением

Много вопросов у детей вызывают примеры на несколько действий. Разберем пару таких примеров.

(0,4 · 8,25 — 2,025) : 0,5 =

Первым действием находим произведение чисел 8,25 и 0,4. Выполняем умножение по правилу. В ответе отсчитываем справа налево три знака и ставим запятую.

Второе действие находится там же в скобках, это разность. От 3,300 вычитаем 2,025. Записываем действие в столбик, запятая под запятой.

Третье действие-деление. Полученную разность во втором действии делим на 0,5. Запятая переносится на один знак. Результат 2,55.

Ответ: 2,55.

(0, 93 + 0, 07) : (0, 93 — 0, 805) =

Первое действие сумма в скобках.Складываем в столбик, помним, что запятая под запятой. Получаем ответ 1,00.

Второе действие разность из второй скобки. Так как у уменьшаемого меньше знаков после запятой, чем у вычитаемого, добавляем недостающий. Результат вычитания 0 ,125.

Третьим действие делим сумму на разность. Запятая переносится на три знака. Получилось деление 1000 на 125.

Ответ: 8 .

Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением

В первом примере находим сумму дробей 5/8 и 3/7. Общим знаменателем будет число 56. Находим дополнительные множ., разделим 56:8 = 7 и 56:7 = 8. Дописываем их к первой и второй дроби соответственно. Перемножаем числители и их множители, получаем сумму дробей 35/56 и 24/56. Получили сумму 59/56. Дробь неправильная, переводим ее в смешанное число.Остальные примеры решаются аналогично.

Примеры с дробями 5 класс для тренировки

Для удобства переведите смешанные дроби в неправильные и выполняйте действия.

Как научить ребенка легко решать дроби с помощью лего

С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.

На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.

Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.

Чтобы получать пятерки по математике не забывайте учить правила и отрабатывать их на практике.


Эта статья представляет собой общий взгляд на действия с дробями. Здесь мы сформулируем и обоснуем правила сложения, вычитания, умножения, деления и возведения в степень дробей общего вида A/B , где A и B некоторые числа, числовые выражения или выражения с переменными. По обыкновению материал будем снабжать поясняющими примерами с детальными описаниями решений.

Навигация по странице.

Правила выполнения действий с числовыми дробями общего вида

Давайте договоримся под числовыми дробями общего вида понимать дроби, в которых числитель и/или знаменатель могут быть представлены не только натуральными числами, но и другими числами или числовыми выражениями. Для наглядности приведем несколько примеров таких дробей: , .

Нам известны правила, по которым выполняются . По этим же правилам можно выполнять действия с дробями общего вида:

Обоснование правил

Для обоснования справедливости правил выполнения действий с числовыми дробями общего вида можно отталкиваться от следующих моментов:

  • дробная черта - это по сути знак деления,
  • деление на некоторое отличное от нуля число можно рассматривать как умножение на число, обратное делителю (этим сразу объясняется правило деления дробей),
  • свойств действий с действительными числами ,
  • и его обобщенном понимании ,

Они позволяют провести следующие преобразования, обосновывающие правила сложения, вычитания дробей с одинаковыми и разными знаменателями, а также правило умножения дробей:

Примеры

Приведем примеры выполнения действия с дробями общего вида по разученным в предыдущем пункте правилам. Сразу скажем, что обычно после проведения действий с дробями полученная дробь требует упрощения, причем процесс упрощения дроби часто сложнее, чем выполнение предшествующих действий. Мы не будем подробно останавливаться на упрощении дробей (соответствующие преобразования разобраны в статье преобразование дробей), чтобы не отвлекаться от интересующей нас темы.

Начнем с примеров сложения и вычитания числовых дробей с одинаковыми знаменателями. Для начала сложим дроби и . Очевидно, знаменатели равны. Согласно соответствующему правилу записываем дробь, числитель которой равен сумме числителей исходных дробей, а знаменатель оставляем прежним, имеем . Сложение выполнено, остается упростить полученную дробь: . Итак, .

Можно было решение вести по-другому: сначала осуществить переход к обыкновенным дробям, после чего провести сложение. При таком подходе имеем .

Теперь вычтем из дроби дробь . Знаменатели дробей равны, поэтому, действуем по правилу вычитания дробей с одинаковыми знаменателями:

Переходим к примерам сложения и вычитания дробей с разными знаменателями. Здесь главная сложность заключается в приведении дробей к общему знаменателю. Для дробей общего вида это довольно обширная тема, ее мы разберем детально в отдельной статье приведение дробей к общему знаменателю . Сейчас же ограничимся парой общих рекомендаций, так как в данный момент нас больше интересует техника выполнения действий с дробями.

Вообще, процесс схож с приведением к общему знаменателю обыкновенных дробей. То есть, знаменатели представляются в виде произведений, дальше берутся все множители из знаменателя первой дроби и к ним добавляются недостающие множители из знаменателя второй дроби.

Когда знаменатели складываемых или вычитаемых дробей не имеют общих множителей, то в качестве общего знаменателя логично взять их произведение. Приведем пример.

Допустим, нам нужно выполнить сложение дробей и 1/2 . Здесь в качестве общего знаменателя логично взять произведение знаменателей исходных дробей, то есть, . В этом случае дополнительным множителем для первой дроби будет 2 . После умножения на него числителя и знаменателя дробь примет вид . А для второй дроби дополнительным множителем является выражение . С его помощью дробь 1/2 приводится к виду . Остается сложить полученные дроби с одинаковыми знаменателями. Вот краткая запись всего решения:

В случае дробей общего вида речь уже не идет о наименьшем общем знаменателе, к которому обычно приводятся обыкновенные дроби. Хотя в этом вопросе все же желательно стремиться к некоторому минимализму. Этим мы хотим сказать, что не стоит в качестве общего знаменателя сразу брать произведение знаменателей исходных дробей. Например, совсем не обязательно брать общим знаменателем дробей и произведение . Здесь в качестве общего знаменателя можно взять .

Переходим к примерам умножения дробей общего вида. Умножим дроби и . Правило выполнения этого действия нам предписывает записать дробь, числитель которой есть произведение числителей исходных дробей, а знаменатель – произведение знаменателей. Имеем . Здесь, как и во многих других случаях при умножении дробей, можно сократить дробь: .

Правило деления дробей позволяет от деления переходить к умножению на обратную дробь. Здесь нужно помнить, что для того, чтобы получить дробь, обратную данной, нужно переставить местами числитель и знаменатель данной дроби. Вот пример перехода от деления числовых дробей общего вида к умножению: . Остается выполнить умножение и упростить полученную в результате дробь (при необходимости смотрите преобразование иррациональных выражений):

Завершая информацию этого пункта, напомним, что любое число или числовое выражение можно представить в виде дроби со знаменателем 1 , поэтому, сложение, вычитание, умножение и деление числа и дроби можно рассматривать как выполнение соответствующего действия с дробями, одна из которых имеет единицу в знаменателе. Например, заменив в выражении корень из трех дробью , мы от умножения дроби на число перейдем к умножению двух дробей: .

Выполнение действий с дробями, содержащими переменные

Правила из первой части текущей статьи применяются и для выполнения действий с дробями, которые содержат переменные. Обоснуем первое из них – правило сложения и вычитания дробей с одинаковыми знаменателями, остальные доказываются абсолютно аналогично.

Докажем, что для любых выражений A , C и D (D тождественно не равно нулю) имеет место равенство на его области допустимых значений переменных.

Возьмем некоторый набор переменных из ОДЗ. Пусть при этих значениях переменных выражения A , C и D принимают значения a 0 , c 0 и d 0 . Тогда подстановка значений переменных из выбранного набора в выражение обращает его в сумму (разность) числовых дробей с одинаковыми знаменателями вида , которая по правилу сложения (вычитания) числовых дробей с одинаковыми знаменателями равна . Но подстановка значений переменных из выбранного набора в выражение обращает его в ту же дробь . Это означает, что для выбранного набора значений переменных из ОДЗ значения выражений и равны. Понятно, что значения указанных выражений будут равны и для любого другого набора значений переменных из ОДЗ, а это означает, что выражения и тождественно равны, то есть, справедливо доказываемое равенство .

Примеры сложения и вычитания дробей с переменными

Когда знаменатели складываемых или вычитаемых дробей одинаковые, то все довольно просто – складываются или вычитаются числители, а знаменатель остается прежним. Понятно, что полученная после этого дробь при надобности и возможности упрощается.

Заметим, что иногда знаменатели дробей отличаются лишь с первого взгляда, но по факту являются тождественно равными выражениями, как например, и , или и . А иногда достаточно упростить исходные дроби, чтобы «проявились» их одинаковые знаменатели.

Пример.

, б) , в) .

Решение.

а) Нам нужно выполнить вычитание дробей с одинаковыми знаменателями. Согласно соответствующему правилу знаменатель оставляем прежним и вычитаем числители, имеем . Действие проведено. Но еще можно раскрыть скобки в числителе и привести подобные слагаемые : .

б) Очевидно, знаменатели складываемых дробей одинаковые. Поэтому, складываем числители, а знаменатель оставляем прежним: . Сложение выполнено. Но несложно заметить, что полученную дробь можно сократить. Действительно, числитель полученной дроби можно свернуть по формуле квадрат суммы как (lgx+2) 2 (смотрите формулы сокращенного умножения), таким образом, имеют место следующие преобразования: .

в) Дроби в сумме имеют разные знаменатели. Но, преобразовав одну из дробей, можно перейти к сложению дробей с одинаковыми знаменателями. Покажем два варианта решения.

Первый способ. Знаменатель первой дроби можно разложить на множители, воспользовавшись формулой разность квадратов, после чего сократить эту дробь: . Таким образом, . Еще не помешает освободиться от иррациональности в знаменателе дроби: .

Второй способ. Умножение числителя и знаменателя второй дроби на (это выражение не обращается в нуль ни при каких значениях переменной x из ОДЗ для исходного выражения) позволяет достичь сразу двух целей: освободиться от иррациональности и перейти к сложению дробей с одинаковыми знаменателями. Имеем

Ответ:

а) , б) , в) .

Последний пример подвел нас к вопросу приведения дробей к общему знаменателю. Там мы почти случайно пришли к одинаковым знаменателям, упрощая одну из складываемых дробей. Но в большинстве случаев при сложении и вычитании дробей с разными знаменателями приходится целенаправленно приводить дроби к общему знаменателю. Для этого обычно знаменатели дробей представляются в виде произведений, берутся все множители из знаменателя первой дроби и к ним добавляются недостающие множители из знаменателя второй дроби.

Пример.

Выполнить действия с дробями: а) , б) , в) .

Решение.

а) Здесь нет надобности что-либо делать со знаменателями дробей. В качестве общего знаменателя берем произведение . В этом случае дополнительным множителем для первой дроби выступает выражение , а для второй дроби – число 3 . Эти дополнительные множители приводят дроби к общему знаменателю, что в дальнейшем позволяет выполнить нужное нам действие, имеем

б) В этом примере знаменатели уже представлены в виде произведений, и никаких дополнительных преобразований не требуют. Очевидно, множители в знаменателях отличаются лишь показателями степеней, поэтому, в качестве общего знаменателя берем произведение множителей с наибольшими показателями, то есть, . Тогда дополнительным множителем для первой дроби будет x 4 , а для второй – ln(x+1) . Теперь мы готовы выполнить вычитание дробей:

в) А в данном случае для начала поработаем со знаменателями дробей. Формулы разность квадратов и квадрат суммы позволяют от исходной суммы перейти к выражению . Теперь понятно, что эти дроби можно привести к общему знаменателю . При таком подходе решение будет иметь следующий вид:

Ответ:

а)

б)

в)

Примеры умножения дробей с переменными

Умножение дробей дает дробь, числитель которой есть произведение числителей исходных дробей, а знаменатель – произведение знаменателей. Здесь, как видите, все привычно и просто, и можно лишь добавить, что полученная в результате выполнения этого действия дробь часто оказывается сократимой. В этих случаях ее сокращают, если, конечно, это необходимо и оправданно.

Примеры с дробями – один из основных элементов математики. Существует много разных типов уравнений с дробями. Ниже приведена подробная инструкция по решению примеров такого типа.

Как решать примеры с дробями – общие правила

Для решения примеров с дробями любых типов, будь то сложение, вычитание, умножение или деление, необходимо знать основные правила:

  • Для того чтобы сложить дробные выражения с одинаковым знаменателем (знаменатель – число, находящееся в нижней части дроби, числитель – в верхней), нужно сложить их числители, а знаменатель оставить тем же.
  • Для того чтобы вычесть от одного дробного выражения второе (с одинаковым знаменателем), нужно вычесть их числители, а знаменатель оставить тем же.
  • Для того чтобы сложить или вычесть дробные выражения с разными знаменателями, нужно найти наименьший общий знаменатель.
  • Для того чтобы найти дробное произведение, нужно перемножить числители и знаменатели, при этом, если есть возможность, сократить.
  • Для того чтобы разделить дробь на дробь, нужно умножить первую дробь на перевернутую вторую.

Как решать примеры с дробями – практика

Правило 1, пример 1:

Вычислить 3/4 +1/4.

Согласно правилу 1, если у дробей двух (или больше) одинаковый знаменатель, нужно просто сложить их числители. Получим: 3/4 + 1/4 = 4/4. Если у дроби числитель и знаменатель одинаковы, такая дробь будет равна 1.

Ответ: 3/4 + 1/4 = 4/4 = 1.

Правило 2, пример 1:

Вычислить: 3/4 – 1/4

Пользуясь правилом номер 2, для решения этого уравнения нужно от 3 отнять 1, а знаменатель оставить тем же. Получаем 2/4. Так как два 2 и 4 можно сократить, сокращаем и получаем 1/2.

Ответ: 3/4 – 1/4 = 2/4 = 1/2.

Правило 3, Пример 1

Вычислить: 3/4 + 1/6

Решение: Пользуясь 3-м правилом, находим наименьший общий знаменатель. Наименьшим общим знаменателем называется такое число, которое делится на знаменатели всех дробных выражений примера. Таким образом, нам нужно найти такое минимальное число, которое будет делиться и на 4, и на 6. Таким числом является 12. Записываем в качестве знаменателя 12. 12 делим на знаменатель первой дроби, получаем 3, умножаем на 3, записываем в числителе 3*3 и знак +. 12 делим на знаменатель второй дроби, получаем 2, 2 умножаем на 1, записываем в числителе 2*1. Итак, получилась новая дробь со знаменателем, равным 12 и числителем, равным 3*3+2*1=11. 11/12.

Ответ: 11/12

Правило 3, Пример 2:

Вычислить 3/4 – 1/6. Этот пример очень схож с предыдущим. Проделываем все те же действия, но в числителе вместо знака +, пишем знак минус. Получаем: 3*3-2*1/12 = 9-2/12 = 7/12.

Ответ: 7/12

Правило 4, Пример 1:

Вычислить: 3/4 * 1/4

Пользуясь четвертым правилом, умножаем знаменатель первой дроби на знаменатель второй и числитель первой дроби на числитель второй. 3*1/4*4 = 3/16.

Ответ: 3/16

Правило 4, Пример 2:

Вычислить 2/5 * 10/4.

Данную дробь можно сократить. В случае произведения сокращаются числитель первой дроби и знаменатель второй и числитель второй дроби и знаменатель первой.

2 сокращается с 4. 10 сокращается с 5. получаем 1 * 2/2 = 1*1 = 1.

Ответ: 2/5 * 10/4 = 1

Правило 5, Пример 1:

Вычислить: 3/4: 5/6

Пользуясь 5-м правилом, получим: 3/4: 5/6 = 3/4 * 6/5. Сокращаем дробь по принципу предыдущего примера и получаем 9/10.

Ответ: 9/10.


Как решать примеры с дробями – дробные уравнения

Дробными уравнениями называются примеры, где в знаменателе есть неизвестное. Для того чтобы решить такое уравнение нужно пользоваться определенными правилами.

Рассмотрим пример:

Решить уравнение 15/3x+5 = 3

Вспомним, нельзя делить на ноль, т.е. значение знаменателя не должно равняться нулю. При решении таких примеров, это нужно обязательно указывать. Для этого существует ОДЗ (область допустимых значений).

Таким образом, 3x+5 ≠ 0.
Отсюда: 3x ≠ 5.
x ≠ 5/3

При x = 5/3 уравнение просто не имеет решения.

Указав ОДЗ, наилучшим способом решить данное уравнение будет избавиться от дробей. Для это сначала представим все не дробные значения в виде дроби, в данном случае число 3. Получим: 15/(3x+5) = 3/1. Чтобы избавиться от дроби нужно умножить каждую из них на наименьший общий знаменатель. В данном случае таковым будет (3x+5)*1. Последовательность действий:

  1. Умножаем 15/(3x+5) на (3x+5)*1 = 15*(3x+5).
  2. Раскрываем скобки: 15*(3x+5) = 45x + 75.
  3. То же самое проделываем с правой частью уравнения: 3*(3x+5) = 9x + 15.
  4. Приравниваем левую и правую часть: 45x + 75 = 9x +15
  5. Переносим иксы влево, числа вправо: 36x = – 50
  6. Находим x: x = -50/36.
  7. Сокращаем: -50/36 = -25/18

Ответ: ОДЗ x ≠ 5/3 . x = -25/18.


Как решать примеры с дробями – дробные неравенства

Дробные неравенства по типу (3x-5)/(2-x)≥0 решаются при помощи числовой оси. Рассмотрим данный пример.

Последовательность действий:

  • Приравниваем числитель и знаменатель к нулю: 1. 3x-5=0 => 3x=5 => x=5/3
    2. 2-x=0 => x=2
  • Чертим числовую ось, расписывая на ней получившиеся значения.
  • Под значение рисуем кружок. Кружок бывает двух типов – заполненный и пустой. Заполненный кружок означает, что данное значение входит в ареал решений. Пустой круг говорит о том, что данное значение не входит в ареал решений.
  • Так как знаменатель не может быть равным нулю, под 2-ой будет пустой круг.


  • Чтобы определить знаки, подставляем в уравнение любое число больше двух, например 3. (3*3-5)/(2-3)= -4. значение отрицательное, значит над областью после двойки пишем минус. Затем подставляем вместо икса любое значение интервала от 5/3 до 2, например 1. Значение опять отрицательное. Пишем минус. То же самое повторяем с областью, находящейся до 5/3. Подставляем любое число, меньшее чем 5/3, например 1. Опять минус.


  • Так как нас интересуют значения икса, при котором выражение будет больше или равно 0, а таких значений нет (везде минусы), это неравенство не имеет решения, то есть x = Ø (пустое множество).

Ответ: x = Ø

В 5 классе средней школы вводится представление дроби. Дробь – это число, состоящее из целого числа долей единиц. Обычные дроби записываются в виде ±m/n, число m называют числителем дроби, число n – его знаменателем. Если модуль знаменателя огромнее модуля числителя, скажем 3/4, то дробь именуется верной, в отвратном случае – неправильной. Дробь может содержать целую часть, скажем 5 * (2/3).К дробям дозволено использовать разные арифметические операции.

Инструкция

1. Приведение к всеобщему знаменателю.Пускай даны дроби a/b и c/d.- В первую очередь находится число НОК(наименьшее всеобщее кратное) для знаменателей дробей.- Числитель и знаменатель первой дроби умножается на НОК/b- Числитель и знаменатель 2-й дроби умножается на НОК/dПример приведён на рисунке.Для сопоставления дробей их нужно привести к всеобщему знаменателю, после этого сравнить числители. Скажем, 3/4 < 4/5, см. рисунок.

2. Сложение и вычитание дробей.Для нахождения суммы 2-х обычных дробей их нужно привести к всеобщему знаменателю, позже чего сложить числители, оставив знаменатель без изменений. Пример сложения дробей 1/2 и 1/3 приведён на рисунке.Разность дробей находится аналогичным образом, позже нахождения всеобщего знаменателя, числители дробей вычитаются, см. пример на рисунке.

3. Умножение и деление дробей.При умножении обычных дробей, числители и знаменатели перемножаются между собой.Для того, дабы поделить две дроби, нужно получить дробь обратную 2-й дроби, т.е. поменять его числитель и знаменатель местами, позже чего произвести умножение полученных дробей.

Модуль представляет собой безусловную величину выражения. Для обозначения модуля используют прямые скобки. Арестанты в них значения считаются взятыми по модулю. Решение модуля состоит в раскрытии модульных скобок по определенным правилам и нахождении множества значений выражения. В большинстве случаев модуль раскрывается таким образом, что подмодульное выражение получает ряд позитивных и негативных значений с том числе и нулевое значение. Исходя из данных свойств модуля, составляются и решаются дальше уравнения и неравенства начального выражения.

Инструкция

1. Запишите начальное уравнение с модулем. Для его решения раскройте модуль. Разглядите всякое подмодульное выражение. Определите, при каком значении входящих в него незнакомых величин выражение в модульных скобках обращается в нуль.

2. Для этого приравняйте подмодульное выражение к нулю и обнаружьте решение получившегося уравнения. Запишите обнаруженные значения. Таким же образом определите значения незнакомой переменной для всего модуля в заданном уравнении.

3. Разглядите случаи существования переменных, когда они хороши от нуля. Для этого запишите систему неравенств для всех модулей начального уравнения. Неравенства обязаны охватывать все допустимые значения переменной на числовой прямой.

4. Нарисуйте числовую прямую и отложите на ней полученные значения. Значения переменной в нулевом модуле будут служить ограничениями при решении модульного уравнения.

5. В начальном уравнении надобно раскрыть модульные скобки, меняя знак выражения так, дабы значения переменной соответствовали отображенным на числовой прямой. Решите полученное уравнение. Обнаруженное значение переменной проверьте на лимитация, заданное модулем. Если решение удовлетворяет условию, значит оно правдиво. Не удовлетворяющие ограничениям корни обязаны отбрасываться.

6. Аналогичным образом раскрывайте модули начального выражения с учетом знака и высчитывайте корни получаемого уравнения. Запишите все полученные корни, удовлетворяющие неравенствам ограничения.

Дробные числа разрешают выражать в различном виде точное значение величины. С дробями дозволено исполнять те же математические операции, что и с целыми числами: вычитание, сложение, умножение и деление. Дабы обучиться решать дроби , нужно помнить о некоторых их особенностях. Они зависят от вида дроби , наличия целой части, всеобщего знаменателя. Некоторые арифметические действия позже выполнения требуют сокращения дробной части итога.

Вам понадобится

  • – калькулятор

Инструкция

1. Наблюдательно посмотрите на данные числа. Если среди дробей есть десятичные и непрвильные, изредка комфортнее сначала исполнить действия с десятичными, а после этого перевести их в неверный вид. Можете перевести дроби в такой вид первоначально, записав значение позже запятой в числитель и поставив 10 в знаменатель. При необходимости сократите дробь, поделив числа выше и ниже черты на один делитель. Дроби, в которых выдается целая часть, приведите к неправильному виду, умножив её на знаменатель и прибавив к итогу числитель. Данное значения станет новым числителем дроби . Дабы выделить целую часть из изначально неправильной дроби , нужно поделить числитель на знаменатель. Целый итог записать слева от дроби . А остаток от деления станет новым числителем, знаменатель дроби при этом не меняется. Для дробей с целой частью допустимо выполнение действий отдельно вначале для целой, а после этого для дробной частей. Скажем, сумма 1 2/3 и 2 ? может быть вычислена двумя методами:- Переведение дробей в неверный вид:- 1 2/3 + 2 ? = 5/3 + 11/4 = 20/12 + 33/12 = 53/12 = 4 5/12;- Суммирование отдельно целых и дробных частей слагаемых:- 1 2/3 + 2 ? = (1+2) + (2/3 + ?) = 3 +(8/12 + 9/12) = 3 + 17/12 = 3 + 1 5/12 = 4 5/12.

2. Для неправильных дробей с различными значениями под чертой обнаружьте всеобщий знаменатель. Скажем, для 5/9 и 7/12 всеобщим знаменателем будет 36. Для этого числитель и знаменатель первой дроби нужно умножить на 4 (получится 28/36), а 2-й – на 3 (получится 15/36). Сейчас можете исполнить нужные расчёты.

3. Если вы собираетесь вычислять сумму либо разность дробей, для начала запишите обнаруженный всеобщий знаменатель под черту. Исполните нужные действия между числителями, а итог запишите над чертой новой дроби . Таким образом, новым числителем станет разность либо сумма числителей изначальных дробей.

4. Для расчёта произведения дробей перемножьте числители дробей и запишите итог на место числителя итоговой дроби . То же самое проделайте для знаменателей. При делении одной дроби на иную запишите одну дробь, а после этого умножьте её числитель на знаменатель 2-й. При этом знаменатель первой дроби умножается соответственно на числитель 2-й. При этом происходит оригинальный переворот 2-й дроби (делителя). Итоговая дробь будет состоять из итогов умножения числителей и знаменателей обеих дробей. Нетрудно обучиться решать дроби , записанные в условии в виде «четырёхэтажной» дроби . Если черта разделяет две дроби , перепишите их через разграничитель «:» и продолжите обыкновенное деление.

5. Для приобретения финального итога полученную дробь сократите, поделив числитель и знаменатель на одно целое число, наибольшее допустимое в данном случае. При этом выше и ниже черты обязаны быть целые числа.

Обратите внимание!
Не исполняйте арифметические действия с дробями, знаменатели которых отличаются. Подберите такое число, дабы при умножении на него числителя и знаменателя всякой дроби в итоге знаменатели обеих дробей были равны.

Полезный совет
При записи дробных чисел делимое пишется над чертой. Эта величина обозначается как числитель дроби. Под чертой записывается делитель, либо знаменатель, дроби. Скажем, полтора килограмма риса в виде дроби запишется дальнейшим образом: 1 ? кг риса. Если знаменатель дроби равен 10, такую дробь называют десятичной. При этом числитель (делимое) пишется справа от целой части через запятую: 1,5 кг риса. Для комфорта вычислений такую дробь неизменно дозволено записать в неправильном виде: 1 2/10 кг картофеля. Для облегчения дозволено сократить значения числителя и знаменателя, поделив их на одно целое число. В данном примере допустимо деление на 2. В итоге получится 1 1/5 кг картофеля. Удостоверьтесь, что числа, с которыми вы собираетесь исполнять арифметические действия, представлены в одном виде.

Если вы пишете курсовую работу либо составляете какой-нибудь иной документ, содержащий расчетную часть, то вам никуда не деться от дробных выражений, которые также надобно напечатать. Как это сделать, разглядим дальше.

Инструкция

1. Кликните один раз по пункту меню «Вставка», после этого выберите пункт «Символ». Это один из самых примитивных методов вставки дроби в текст. Заключается он в дальнейшем. В комплекте готовых символов есть дроби . Их число, как водится, невелико, но если вам в тексте необходимо написать?, а не 1/2, то для вас сходственный вариант будетсамым оптимальным. Помимо того, число символов дробей может зависеть и от шрифта. Скажем, для шрифта Times New Roman дробей немножко поменьше, чем для того же Arial. Варьируйте шрифтами, дабы обнаружить самый наилучший вариант, если дело касается примитивных выражений.

2. Кликните по пункту меню «Вставка» и выберите подпункт «Объект». Перед вами появится окно с перечнем допустимых объектов для вставки. Выберите среди них Microsoft Equation 3.0. Это приложение поможет вам печатать дроби . Причем не только дроби , но и трудные математические выражения, содержащие разные тригонометрические функции и прочие элементы. Двукратно кликните по этому объекту левой кнопкой мышки. Перед вами появится окно, содержащее много символов.

3. Дабы напечатать дробь, выберите символ изображающий дробь с пустым числителем и знаменателем. Кликните по нему один раз левой кнопкой мыши. Появится дополнительное меню, уточняющее схему самой дроби . Может быть несколько ее вариантов. Выберите особенно для вас подходящий и кликните по нему один раз левой кнопкой мыши.

4. Введите в числителе и знаменателе дроби все необходимые данные. Это будет протекать теснее непринужденно на листе документа. Дробь будет вставлена отдельным объектом, тот, что в случае необходимости дозволено переместить в всякое место документа. Вы можете напечатать многоэтажные дроби . Для этого разместите в числитель либо знаменатель (как вам надобно) еще одну дробь, которую дозволено предпочесть в окне того же приложения.

Видео по теме

Алгебраическая дробь - это выражение вида А/В, где буквы А и В обозначают всякие числовые либо буквенные выражения. Нередко числитель и знаменатель в алгебраических дробях имеют массивный вид, но действия с такими дробями следует делать по тем же правилам, что и действия с обычными, где числитель и знаменатель - целые правильные числа.

Инструкция

1. Если даны смешанные дроби , переведите их в неправильные (дробь, в которой числитель огромнее знаменателя): умножьте знаменатель на целую часть и прибавьте числитель. Так число 2 1/3 превратится в 7/3. Для этого 3 умножают на 2 и прибавляют единицу.

2. Если нужно перевести десятичную дробь в неправильную, то представьте ее как деление числа без запятой на единицу со столькими нулями, сколько чисел стоит позже запятой. Скажем, число 2,5 представьте как 25/10 (если сократить, то получится 5/2), а число 3,61 – как 361/100. Оперировать с неправильными дробями нередко легче, чем со смешанными либо десятичными.

3. Если дроби имеют идентичные знаменатели, а вам нужно их сложить, то примитивно сложите числители; знаменатели остаются без изменений.

4. При необходимости произвести вычитание дробей с идентичными знаменателями из числителя первой дроби вычтите числитель 2-й дроби. Знаменатели при этом также не меняются.

5. Если нужно сложить дроби либо вычесть одну дробь из иной, а они имеют различные знаменатели, приведите дроби к всеобщему знаменателю. Для этого обнаружьте число, которое будет наименьшим всеобщим кратным (НОК) обоим знаменателям либо нескольким, если дробей огромнее 2-х. НОК - это число, которое разделится на знаменатели всех данных дробей. К примеру, для 2 и 5 это число 10.

6. Позже знака «равно» проведите горизонтальную черту и запишите в знаменатель это число (НОК). Проставьте к всякому слагаемому добавочные множители - то число, на которое нужно домножить и числитель, и знаменатель, дабы получить НОК. Ступенчато умножайте числители на добавочные множители, сберегая знак сложения либо вычитания.

7. Посчитайте итог, сократите его при необходимости либо выделите целую часть. Для примера – нужно сложить? и?. НОК для обеих дробей - 12. Тогда добавочный множитель к первой дроби - 4, ко 2-й - 3. Итого: ?+?=(1·4+1·3)/12=7/12.

8. Если дан пример на умножение, перемножьте между собой числители (это будет числитель итога) и знаменатели (получится знаменатель итога). В этом случае к всеобщему знаменателю их приводить не нужно.

9. Дабы поделить дробь на дробь, нужно опрокинуть вторую дробь «вверх ногами» и перемножить дроби. То есть а/b: с/d = a/b · d/c.

10. Раскладывайте числитель и знаменатель на множители, если это требуется. Скажем, переносите всеобщий множитель за скобку либо раскладывайте по формулам сокращённого умножения, дабы после этого дозволено было при необходимости сократить числитель и знаменатель на НОД – минимальный всеобщий делитель.

Обратите внимание!
Числа складывайте с числами, буквы одного рода с буквами того же рода. Скажем, невозможно сложить 3a и 4b, значит в числителе так и останется их сумма либо разность - 3a±4b.

Видео по теме

В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.

Сокращение дроби

Математическая операция. Сокращение дроби

Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}

Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}

Приведение дробей к общему знаменателю

Математическая операция. Приведение дробей к общему знаменателю

Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:

  • найти наименьшее общее кратное знаменателей: M=НОК(b,d);
  • умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
  • умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).

Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).

Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.

На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:

\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}

Сравнение дробей

Математическая операция. Сравнение дробей

Для сравнения двух обыкновенных дробей необходимо:

  • сравнить числители получившихся дробей; дробь с большим числителем будет больше.
Например, \frac{9}{14}

При сравнении дробей имеются несколько частных случаев:

  1. Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
  2. Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
  3. Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}

Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).

Сложение и вычитание дробей

Математическая операция. Сложение и вычитание дробей

Чтобы сложить две дроби, нужно:

  • привести их к общему знаменателю;
  • сложить их числители, а знаменатель оставить без изменений.

Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}

Чтобы из одной дроби вычесть другую, нужно:

  • привести дроби к общему знаменателю;
  • из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.

Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}

Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.

Преобразование смешанного числа в неправильную дробь и обратно

Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно

Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}

Чтобы преобразовать неправильную дробь в смешанное число необходимо:

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель, а знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}

Преобразование десятичной дроби в обыкновенную

Математическая операция. Преобразование десятичной дроби в обыкновенную

Для того, чтобы обратить десятичную дробь в обыкновенную, надо:

  1. в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
  2. в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
  3. отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.

Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)

Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")

Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:

3.014=3\frac{14}{100}

Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:

\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667

Умножение и деление дробей

Математическая операция. Умножение и деление дробей

Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.

\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}

Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).

\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}

В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7