Основное условие устойчивости систем автоматического управления. Влияние параметров САУ на её устойчивость

Следящая система (рис. 1.14, а) находится в состоянии равновесия, когда ее ошибка Это состояние может быть устойчивым или неустойчивым. Если после некоторого изменения задающего воздействия (поворота ведущего вала на угол система в результате затухающего переходного процесса (рис. 2.1, а, б) снова приходит в состояние равновесия то это состояние равновесия является устойчивым и система называется устойчивой. Когда после незначительного изменения задающего воздействия (отклонения системы от равновесного состояния) система не стремится в первоначальное состояние равновесия, а в ней возникают незатухающие колебания управляемой величины (рис. 2.1, в, г) или же изменение будет независимым от то состояние равновесия в данной системе является неустойчивым и система называется неустойчивой.

Наглядное представление об устойчивом и неустойчивом равновесных состояниях дает рассмотрение системы шар - поверхность. Шар, помещенный во впадине (рис. 3.1, а), находится в устойчивом равновесном состоянии, так как после его отклонения под влиянием внешнего воздействия он возвратится в свое первоначальное состояние. Система шар - поверхность является устойчивой. Шар, расположенный на верхней точке возвышенности (рис. , находится в неустойчивом равновесном положении: достаточно незначительного отклонения от

Рис. 3.1. К понятию устойчивости равновесных состояний системы шар-поверхность: а - устойчивое состояние; б - неустойчивое состояние; в - состояние, устойчивое при малых и неустойчивое при больших отклонениях.

этого состояния, и шар скатится по склону поверхности и не возвратится в исходное положение. Рассматриваемая система неустойчива.

Таким образом, под устойчивостью понимается свойство системы возвращаться в прежнее состояние равновесия после вывода ее из этого состояния и прекращения изменения задающего или влияния возмущающего воздействия.

Только устойчивая система является работоспособной. Поэтому одной из основных задач теории автоматического управления является исследование устойчивости САУ. Основы строгой теории устойчивости динамических систем были разработаны акад. А. М. Ляпуновым в работе «Общая задача об устойчивости движения» (1892 г.). Понятия об устойчивости, вытекающие из этой работы, заключаются в следующем.

Если система описывается линейным дифференциальным уравнением, то ее устойчивость не зависит от величины возмущения. Линейная система, устойчивая при малых возмущениях, будет устойчива и при больших. Нелинейные же системы могут быть устойчивы при малых возмущениях и неустойчивы при больших. Примером такой нелинейной системы являются стенные часы. Если неподвижному маятнику сообщить слабый толчок, то маятник, совершив несколько качаний, остановится, т. е. система устойчива при малых возмущениях. Если же маятнику сообщить более сильный толчок, то последний у заведенных часов начинает совершать незатухающие колебания. Следовательно, система неустойчива при больших возмущениях. Наглядное представление о нелинейных системах, устойчивых при малых и неустойчивых при больших возмущениях, дает рассмотрение шара, помещенного во впадине, расположенной на вершине выпуклого тела (рис. 3.1, в). При малых отклонениях, не превышающих края впадины, шар возвращается в исходное положение, т. е. система шар-поверхность устойчива. При отклонениях за край впадины шар не возвращается в исходное положение - система неустойчива. Поэтому для нелинейных систем устойчивость исследуется отдельно для случая малых возмущений, т. е. устойчивость в малом, и устойчивость при больших возмущениях, т. е. устойчивость в большом.

Согласно теореме Ляпунова, об устойчивости нелинейных систем при малых возмущениях можно судить по их линеаризированным уравнениям, достаточно точно описывающим поведение систем при малых отклонениях от состояния равновесия. Для определения устойчивости нелинейных систем при больших возмущениях необходимо пользоваться исходными нелинейными уравнениями динамики. В большинстве практических случаев системы, устойчивые при малых отклонениях, оказываются устойчивыми и при достаточно больших отклонениях, возможных в процессе эксплуатации, и поэтому вопрос об устойчивости этих систем может быть решен на основании исследования линеаризованных уравнений.

Проблема устойчивости обычно возникает в замкнутых САУ из-за влияния обратной связи. Поэтому в дальнейшем устойчивость исследуется на примерах замкнутых систем, хотя методы исследования устойчивости универсальны.


Устойчивость системы автоматического управления является одной из важнейших характеристик системы, т.к. от нее зависит работоспособность системы. Система, у которой отсутствует устойчивость, не может качественно решать задачу управления. Отсутствие устойчивости также может привести к разрушению самой системы в процессе управления или разрушению объекта управления, поэтому использование неустойчивых систем нецелесообразно.

Устойчивость системы автоматического управления - это свойство системы воз-

вращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему состояния первоначального равновесия.

Примером устойчивых и неустойчивых систем могут служить системы из шарика, расположенного на вогнутой и выпуклой поверхности, представленные на рисунке 60.

Рис.60. Примеры систем: а) устойчивой; б) неустойчивой

На рисунке 60а шарик, расположенный на вогнутой поверхности и смещенный в сторону определенным усилием, после окончания внешнего воздействия возвратится в положение первоначального равновесия. При отсутствии трения о поверхность или его минимальном значении шарик будет совершать непродолжительные колебания около положения равновесия до возвращения в первоначальное положение равновесия (кривая 1- затухающий колебательный процесс). При большом трении шарик возвратится в положение первоначального равновесия без колебаний (кривая 2 - апериодический процесс). При очень большом значении трения шарик может не вернуться в положение первоначального равновесия (кривая 3), но возвратится в область, близкую к положению равновесия. В рассмотренном случае налицо наличие устойчивой системы. В устойчивых САУ возникают подобные переходные процессы (затухающие колебательные и апериодические).

На рисунке 60б шарик, расположенный на выпуклой поверхности и смещенный в сторону определенным усилием, не возвратится в положение первоначального равновесия (кривая 4), поэтому система является неустойчивой. В неустойчивых системах возникают переходные процессы виде расходящихся колебаний (кривая 5) или апериодические (кривая 4).

Неустойчивость САУ, как правило, возникает из-за очень сильного действия обратной связи. Причинами динамической неустойчивости обычно являются значительные инерционные характеристики звеньев замкнутой системы, из-за которых сигнал обратной связи в режиме колебаний так отстает от входного сигнала, что оказывается с ним в фазе. Получается, что характер действия отрицательной обратной связи приобретает характер

положительной.

Составим математическое описание устойчивости и неустойчивости. Так как устойчивость системы зависит только от характера ее свободного движения, то данное свободное движение системы можно описать однородным дифференциальным уравнением:


характеристическое уравнение, которого будет представлено следующим выражением:

Общее решение однородного дифференциального уравнения (2.19.) представим в следующем виде:

где C k – постоянные, зависящие от начальных условий, p k – корни характеристического уравнения.

Корни характеристического уравнения могут быть комплексными (p k = α k ± jβ k ), действительными (p k = α k ) или мнимыми (p k = jβ k ). Комплексные корни всегда попарно сопряжены между собой, т.е. если имеется корень уравнения с положительной мнимой частью, то обязательно будет существовать корень с такой же по модулю, но отрицательной мнимой частью. y(t) при t из (2.21.) будет стремиться к нулю лишь тогда, когда каждое слагаемое С к е p k t → 0. Характер данной функции будет зависеть от вида корня. Возможные случаи расположения корней p k на комплексной плоскости и соответствующие им функции y(t) = С к е p k t представлены на рисунке 61. Вид функций показан внутри эллипсов.

Рис.61. Влияние расположения корней характеристического уравнения на

составляющие свободного движения системы

На рисунке 61 видно, что если каждому действительному корню p k = α k для выражения (2.21.) будет соответствовать слагаемое:

y к (t) = С к е α k t (2.22.)

тогда приα к < 0 (корень p 1) функция при t → ∞ будет стремиться к нулю, при α к > 0 (корень p 3 ) функция будет неограниченно возрастать, а при α к = 0 (корень p 2)функция будет оставаться постоянной.

Если характеристическое уравнение будет иметь комплексные корни, то каждой паре сопряженных комплексных корней p k, k+1 = α k ± jβ k , будут соответствовать два слагаемых, которые можно объединить и представить в виде следующего выражения:

Данная функция представляет собой синусоиду с изменяющейся по экспоненте амплитудой и частотой β k . При отрицательной действительной части двух комплексных корней α к, к+1 < 0 , (корни p 4 и p 5 )колебательная составляющая функции будет затухать, а при положительной действительной части α к, к+1 > 0 , (корни p 8 и p 9 ) амплитуда колебаний будет увеличиваться неограниченно. При отсутствии действительной части комплексных корней α к, к+1 = 0 (корни p 6 и p 7 ), т.е. наличии только мнимых корней, функция будет представлять собой незатухающую синусоиду с частотой β k .

Исходя из определения устойчивости, если первоначальное положение равновесия принимается за ноль, то у устойчивых систем величина выходного параметра с течением времени должна стремиться к нулю, т.е. система сама возвратится в положение равновесия. Необходимым и достаточным условием этого является, чтобы все слагаемые решения дифференциального уравнения (2.21.) с течением времени стремились к нулю, что может быть достигнуто при отрицательных действительных корнях уравнения, а комплексные корни должны иметь отрицательную действительную часть. Существование хотя бы одного положительного действительного корня или пары комплексных корней с положительной действительной частью приведет к тому, что величина выходного параметра системы не возвратится к первоначальному значению, т.е. система будет неустойчивой.

Анализируя местоположение корней характеристического уравнения на комплексной плоскости, представленное на рисунке 62, можно заметить, что САУ является устойчивой, если все корни характеристического уравнения находятся в левой полуплоскости и все они являются действительными отрицательными или комплексными с отрицательной действительной частью. Наличие хотя бы одного корня в правой полуплоскости будет характеризовать неустойчивость системы.

Устойчивость системы является внутренним свойством системы, зависящим только от вида корней характеристического уравнения, описывающего свойства системы, и не зависящим от внешнего воздействия. Необходимым и достаточным условием устойчивости системы является положение всех корней уравнения в левой (отрицательной) полуплоскости.

Положительную и отрицательную полуплоскости, в которых находятся положительные или отрицательные корни характеристического уравнения, обеспечивающие устойчивость или неустойчивость системы, разделяет мнимая ось ± . Данная ось является границей устойчивости, поэтому если у характеристического уравнения есть одна пара чисто мнимых корней p k, k+1 jβ k , а другие корни находятсяв отрицательной полуплоскости, то система характеризуется наличием незатухающих колебаний с частотой ω = β к. Принято считать, что в таком случае система находится на колебательной границе устойчивости .

Точка β = 0 на мнимой оси соответствует нулевому корню. Считается, что уравнение, имеющее один нулевой корень, находится на апериодической границе устойчивости , а при наличии двух нулевых корней система неустойчива.

Рис.62. Расположение корней характеристического уравнения устойчивой системы на

комплексной плоскости

Не стоит забывать, что уравнения почти всех реальных САУ не являются линейными, а приведены к линейным уравнениям с помощью линеаризации, поэтому допущения, сделанные при линеаризации, могут повлиять на правильность определения устойчивости системы.

А. М. Ляпунов в 1892 г. в своей работе «Общая задача об устойчивости движения» привел доказательство теоремы, в которой были сделаны следующие выводы для линеаризованных уравнений:

1. Если все действительные корни характеристического уравнения системы являются отрицательными, то система считается устойчивой.

2. Если хотя бы один действительный корень характеристического уравнения системы положительный, то система считается неустойчивой.

3. Если характеристическое уравнение линеаризованной системы имеет хотя бы один нулевой корень или одну пару мнимых корней, то нельзя судить об устойчивости реальной системы по линеаризованному уравнению.

Следовательно, вывод об устойчивости реальных систем необходимо делать на основе анализа исходного нелинейного уравнения и для определения неустойчивости или устойчивости системы будет достаточно выявить положительность (отрицательность) действительных корней характеристического уравнения.

Критериями устойчивости называют определенные правила, по которым в теории автоматического управления определяют знаки корней характеристического уравнения, не решая его. Различают алгебраические и частотные критерии устойчивости.

Алгебраическими критериями устойчивости системыназывают необходимое и достаточное условие отрицательности корней при определенных значениях коэффициентов в характеристическом уравнении.

Частотными критериями устойчивости системы установлена зависимость устойчивости системы от формы частотных характеристик системы.

Устойчивость -это способность системы возвращаться к номинальному режиму, если она отклонилась по каким-то причинам от этого режима.

Требования к устойчивости обязательно для всех САУ.

Строгое определение устойчивости дано А.М. Ляпуновым в работе «Общая задача об устойчивости движения» (конец 19 века)

Пусть динамика системы описывается уравнением

y - выходная величина

x - входная величина

y ( i ) , x ( j ) - производные.

Предположим, что в этой системе существует номинальный режим работы у н (t ), который однозначно определяется номинальным входным воздействием х н (t ) и номинальными начальными условиями.

(2)

Так как номинальные начальные условия (2) на практике трудно выдержать, в системе существует «отклоненные» начальные условия.

(3)

Для номинального режима справедливо уравнение:

Отклоненным начальным условиям соответствует отклоненный режим.

Для отклоненного режима справедливо уравнение:

(6)

Вычтем из уравнения (5) уравнение (4), получим (7)

Введем определение.

Номинальный режим у н (t ) устойчив по Ляпунову , если при любых отклоненных начальных условиях (3) , достаточно мало отличающихся от номинальных номинальных начальных условий (2), при всех t > 0 будет мало z(t).

Если номинальный режим устойчив по Ляпунову и при этом предел
, то номинальный режим называетсяасимптотически устойчивым .

Если найдутся начальные условия (3), сколько угодно мало отличающиеся от номинальных начальных условий (2), и при этом
станет больше некоторой малой, наперед заданной величины, то номинальный режиму н (t ) называется неустойчивым.

Из (7) следует, что поведение z (t ) совершенно не зависит от вида входного воздействия х н (t ) .

Отсюда следует вывод: либо в системе (1) асимптотически устойчивы все номинальные режимы, соответствующие разным входным х н (t ), либо они все неустойчивы.

Поэтому можно говорить об устойчивости или неустойчивости системы, а не какого-либо одного ее режима.

Это важный вывод, сокращающий объем исследований САУ.

К сожалению, он справедлив только для линейных САУ.

Необходимые и достаточные условия устойчивости линейных сау.

Для асимптотической устойчивости линейных систем необходимо и достаточно чтобы все корни характеристического уравнения.

имела бы отрицательную вещественную часть.

Известно, что решение дифференциального уравнения с постоянными коэффициентами

1. Пусть корни вещественные .


При

- а это отклонение от номинального режима.

2. Если корни комплексные .

Необходимое условие устойчивости.

Для асимптотической устойчивости системы (1), (8) необходимо, чтобы все коэффициенты характеристического уравнения имели один знак.

Геометрическая трактовка условия устойчивости

Для устойчивости САУ необходимо и достаточно, чтобы корни характеристического уравнения были бы расположены в левой полуплоскости комплексной плоскости корней.

Критерии устойчивости САУ.

Это искусственные приемы, которые позволяют, не находя корней характерного уравнения, ответить на вопросы об устойчивости САУ, т.е. определять знаки вещественных частей корней.

Два вида критериев устойчивости:

1). Алгебраический критерий устойчивости (критерий устойчивости Гурвица).

Пусть заданно характерное уравнение.

Для устойчивости САУ необходимо и достаточно:

1). Чтобы все коэффициенты характеристического уравнения имели бы один знак -
(
система не устойчива)

2). Главный определитель Гурвица, составленный по определенному правилу, и все его диагонали миноры имели бы знак коэффициентов - были бы больше нуля.

Правила написания главного определения Гурвица.

1). По главной диагонали определителя располагаются все коэффициенты характеристического уравнения в порядке возрастания индексов, начиная с a 1 .

2). Места в определителе над главной диагональю заполняются коэффициентами характеристического уравнения в порядке возрастания индексов.

3). Места в определителе под главной диагональю заполняются коэффициентами характерного уравнения в порядке убывания индексов.

4). Места в определителе, где должны стоять коэффициенты с индексами больше n и меньше нуля, заполняются нулями

Таким образом, главный определитель Гурвица имеет вид:

A=
>0

САУ устойчива, если

1). Все коэффициенты характеристического уравнения больше нуля (0!)

,
, ….

2). Главный определитель Гурвица и все его диагональные миноры > 0.

,
,
, ….

Рассмотрим примеры.

1.

1.

2.

Для устойчивости САУ второго порядка необходимым и достаточным условием устойчивости является положительность коэффициентов характеристического уравнения.

1.
i=0…3

2.

Необходимым и достаточным условием устойчивости систем третьего порядка является положительность коэффициентов и произведение внутренних членов
должно быть больше произведения крайних членов
характеристического уравнения.

,


,
,

Есть еще алгебраический критерий Рауса. Это тот же критерий Гурвица, но организованный таким образом, что по нему удобно составлять программы для определения устойчивости.

Критерий устойчивости Вышнеградского для систем третьего порядка.

Вышнеградский И.А. предложил изображать границу устойчивости на так называемой плоскости параметров Вышнеградского.

Пусть имеем характеристическое уравнение третьей степени.

Преобразуем его с помощью подстановки:

Тогда оно примет вид:

A 1 и A 2 называются параметрами Вышнеградского (безразмерные величины), в плоскости которых строится граница устойчивости.

Применим к преобразованному уравнению критерий устойчивости Гурвица

или A 1 A 2 > 1

На границе устойчивости
.

Отсюда
- уравнение на границе устойчивости

По коэффициентам характеристического уравнения определяются А 1 и А 2 . Если точка оказалась ниже гиперболы – САУ устойчива, выше - неустойчива.

PAGE \* MERGEFORMAT 14

Лекция №4

Устойчивость САУ

Свойство системы приходить в исходное состояние после снятия возмущения называется устойчивостью.

Определение.

Кривые 1 и 2 характеризуют устойчивую систему, кривые 3 и 4 характеризуют системы неустойчивые.ε

Системы 5 и 6 на границе устойчивости  5 - нейтральная система, 6 - колебательная граница устойчивости.

Пусть дифференциальное уравнение САУ в операторной форме имеет вид 

Тогда решение дифференциального уравнения (движение системы) состоит из двух частей  Вынужденное движение того же вида что и входное воздействие.

При отсутствии кратных корней где С i -постоянные интегрирования, определяемые из начальных условий,

 1 ,  2 …,  n – корни характеристического уравнения

Расположение корней характеристического

уравнения системы на комплексной плоскости

Корни характеристического уравнения не зависят ни от вида возмущения, ни от

начальных условий, а определяются только коэффициентами а 0 , а 1 , а 2 ,…,а n , то есть параметрами и структурой системы.

1-корень действительный, больше нуля;

2-корень действительный, меньше нуля;

3-корень равен нулю;

4-два нулевых корня;

5-два комплексных сопряженных корня, действительная часть которых

Положительна;

6-два комплексных сопряженных корня, действительная часть которых отрицательная;

7-два мнимых сопряженных корня.

Методы анализа устойчивости :

  1. Прямые (основаны на решении дифференциальных уравнений);
  2. Косвенные (критерии устойчивости).

Теоремы А.М. Ляпунова.

Теорема 1.

Теорема 2.

Примечания:

  1. Если среди корней характеристического уравнения имеется два и более нулевых корня, то система неустойчива.
  2. Если один корень нулевой, а все остальные находятся в левой полуплоскости, то система нейтральна.
  3. Если 2 корня мнимые сопряженные, а все остальные в левой полуплоскости, то система на колебательной границе устойчивости.

Критерии устойчивости САУ.

Критерий устойчивости - это правило, позволяющее выяснить устойчивость системы без вычисления корней характеристического уравнения.

В 1877г. Раус установил:

1. Критерий устойчивости Гурвица

Критерий разработан в 1895г.

Пусть определено характеристическое уравнение замкнутой системы: уравнение приводим к виду, чтобы a 0 >0.

Составим главный определитель Гурвица по следующему правилу:

по главной диагонали записываются коэффициенты уравнения, начиная со второго по последний, столбцы вверх от диагонали заполняются коэффициентами с возрастающими индексами, а столбцы вниз от диагонали - коэффициентами с убывающими индексами. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексами меньше 0 и больше n пишут нуль.

Выделим диагональные миноры или простейшие определители в главном определителе Гурвица:

Формулировка критерия.

Для систем выше второго порядка кроме положительности всех коэффициентов характеристического уравнения необходимо выполнение следующих неравенств:

  1. Для систем третьего порядка:
  2. Для систем четвертого порядка:
  3. Для систем пятого порядка:
  1. Для систем шестого порядка:

Пример. Дано характеристическое уравнение исследовать устойчивость системы по Гурвицу.

Для устойчивых систем необходимо и

2. Критерий Рауса

Критерий Рауса используется при исследовании устойчивости систем высокого порядка.

Формулировка критерия:

Таблица Рауса.

Алгоритм заполнения таблицы: в первой и второй строках записываются коэффициенты уравнения с четными и нечетными индексами; элементы остальных строк вычисляются по следующему правилу:

Достоинство критерия: можно исследовать устойчивость систем любого порядка.

2. Критерий устойчивости Найквиста

Принцип аргумента

В основе частотных методов лежит принцип аргумента.

Проведем анализ свойств многочлена вида:

Где  i - корни уравнения

На комплексной плоскости каждому корню соответствует вполне определенная точка. Геометрически каждый корень  i можно изобразить в виде вектора, проведенного из начала координат в точку  i : |  i | - длина вектора, arg  i - угол между вектором и положительным направлением оси абсцисс. Отобразим D(p) в пространство Фурье, тогда где j  -  i - элементарный вектор.

Концы элементарных векторов находятся на мнимой оси.

Модуль вектора, а аргумент (фаза)

Направление вращения вектора против часовой стрелки принимают за ПОЛОЖИТЕЛЬНОЕ. Тогда при изменении  от до каждый элементарный вектор (j  -  i ) повернется на угол +  , если  i лежит в левой полуплоскости.

Пусть D ( )=0 имеет m корней в правой полуплоскости и n - m корней в левой, тогда при возрастании от до изменение аргумента вектора D(j ) (угол поворота D(j ), равный сумме изменений аргументов элементарных векторов) будет

Принцип аргумента:

Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.

Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:

  1. Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
  2. Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
  3. Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
  4. Удобно определять запасы устойчивости.

1. Система, устойчивая в разомкнутом состоянии

Пусть введем вспомогательную функцию заменим p  j  , тогда

Согласно принципа аргумента изменение аргумента D(j  ) и D з (j  ) при 0<  <  равно Тогда то есть годограф W 1 (j  ) не должен охватывать начало координат.

Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j 0), а вместо вспомогательной функции W 1 (j  ) используем АФХ разомкнутой системы W (j  ).

Формулировка критерия №1

Примеры.

Отметим, что разность числа положительных и отрицательных переходов АФХ левее точки (-1, j 0) равна нулю.

2. Система, имеющая полюсы на мнимой оси в разомкнутом состоянии

Для анализа устойчивости системы АФХ дополняют окружностью бесконечно большого радиуса при  0 против часовой стрелки до положительной вещественной полуоси при нулевых полюсах, а в случае чисто мнимых корней - полуокружностью по часовой стрелке в точке разрыва непрерывности АФХ.

Формулировка критерия №2

  1. Система с неустойчивой разомкнутой цепью

Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:

  1. Следствием наличия неустойчивых звеньев;
  2. Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.

X отя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи .

Пусть характеристический многочлен D (p ) разомкнутой системы имеет m корней с положительной вещественной частью.

Тогда

Вспомогательная функция при замене p  j  согласно принципа аргумента для устойчивых замкнутых систем должна иметь следующее изменение аргумента при

Формулировка критерия №3

Формулировка Я.З. Цыпкина

Критерий Найквиста для ЛЧХ

Примечание: фазовая характеристика ЛЧХ астатических систем дополняется монотонным участком +  /2 при  0.

Пример 1.

Здесь m =0  система устойчива, но при уменьшении k система может быть неустойчива, поэтому такие системы называются условно-устойчивыми.

Пример 2.

20 lgk

1/ T 0

Здесь

При любых k система неустойчива. Такие системы называются структурно-неустойчивыми.

Пример 3.

АФХ охватывает точку с координатами (-1, j 0) 1/2 раза, следовательно замкнутая система устойчива.

Пример 4.

при  0 АФХ имеет разрыв, и поэтому ее нужно дополнить дугой бесконечно большого радиуса от отрицательной вещественной полуоси.

На участке от -1 до -  имеется один положительный переход и полтора отрицательных. Разность между положительными и отрицательными переходами равна -1/2, а для устойчивости замкнутой системы требуется +1/2, так как характеристический полином разомкнутой системы имеет один положительный корень - система неустойчива.

Абсолютно-устойчивой называют систему, которая сохраняет устойчивость при любом уменьшении коэффициента усиления разомкнутой цепи, иначе система условно- устойчивая.

Системы, которые можно сделать устойчивыми путём изменения их параметров, называются структурно-устойчивыми , иначе – структурно-неустойчивыми.

Запасы устойчивости

Для нормального функционирования всякая САР должна быть удалена от границы устойчивости и иметь достаточный запас устойчивости. Необходимость этого обусловлена следующими причинами:

  1. Уравнения элементов САР, как правило, идеализированы, при их составлении не учитывают второстепенные факторы;
  2. При линеаризации уравнений погрешности приближения дополнительно увеличиваются;
  3. Параметры элементов определяют с некоторой погрешностью;
  4. Параметры однотипных элементов имеют технологический разброс;
  5. При эксплуатации параметры элементов изменяются вследствие старения.

В практике инженерных расчетов наиболее широко используют определение запаса устойчивости на основе критерия НАЙКВИСТА, по удалению АФХ разомкнутой системы от критической точки с координатами (-1, j 0), что оценивают двумя показателями: запасом устойчивости по фазе и запасом устойчивости по модулю (по амплитуде) H .

Для того чтобы САР имела запасы устойчивости не менее  и H , АФХ ее разомкнутой цепи при удовлетворении критерия устойчивости не должна заходить в часть кольца, заштрихованного на рис. 1, где H определяется соотношением

Если устойчивость определяется по ЛЧХ условно-устойчивых систем, то для обеспечения запасов устойчивости не менее  и h необходимо, чтобы:

а) при h  L  - h фазо-частотная характеристика удовлетворяла неравенствам θ > -180  +  или θ < -180  -  , т.е. не заходила в заштрихованную область 1 на рис. 2;

б) при -180  +   θ  -180  -  амплитудно-частотная характеристика удовлетворяла неравенствам L < - h или L > h , т.е. не заходила в заштрихованные области 2" и 2"" на рис. 2.

Для абсолютно устойчивой системы запасы устойчивости  и h определяют так, как показано на рис. 3:

1. Запас по фазе

  1. Запас по модулю h =- L (ω -π ), где ω -π – частота, при которой θ=-180 ˚ .

Необходимые значения запасов устойчивости зависит от класса САР и требований к качеству регулирования. Ориентировочно должно быть  =30  60  и h =6  20дБ.

Минимально допустимые запасы устойчивости по амплитуде должны быть не менее 6дБ (то есть передаточный коэффициент разомкнутой системы в два раза меньше критического), а по фазе не менее 25  30  .

Устойчивость системы со звеном чистого запаздывания

Если АФХ разомкнутой системы проходит через точку (-1, j 0), то система на грани устойчивости.

Систему с чистым запаздыванием можно сделать устойчивой, если в схему включить безынерционное звено с передаточным коэффициентом, меньшим 1. Возможны и другие виды корректирующих устройств.

Структурно-устойчивые и структурно-неустойчивые системы

Один из способов изменения качества системы (в смысле устойчивости) – это изменить передаточный коэффициент разомкнутой системы.

При изменении k L ( ) поднимется либо опускается. Если k увеличивать, L ( ) поднимается и  ср будет возрастать, а система останется неустойчивой. Если k уменьшать, то систему можно сделать устойчивой. Это один из способов коррекции системы.

Системы, которые можно сделать устойчивыми путем изменения параметров системы, называются СТРУКТУРНО-УСТОЙЧИВЫМИ.

Для этих систем есть критический передаточный коэффициент разомкнутой системы. K крит. – это такой передаточный коэффициент, когда система на грани устойчивости.

Существуют системы СТРУКТУРНО-НЕУСТОЙЧИВЫЕ – это такие системы, которые невозможно сделать устойчивыми изменением параметров системы, а требуется для устойчивости изменять структуру системы.

Пример.

Рассмотрим три случая:

  1. Пусть

Тогда

Проверим работу системы на устойчивость.

Δ = а 3 Δ 2 >0.

Для определения k рс.кр. приравняем нулю  2 .

Тогда

При при

Рассматриваемая система СТРУКТУРНО-УСТОЙЧИВАЯ, так как ее можно стабилизировать путем изменения параметров звеньев.

  1. Пусть и те же, что в первом случае.

Теперь Статической ошибки по каналу управления нет.

Условия устойчивости по Гурвицу:

Пусть  2 =0, тогда если то система неустойчивая.

Данная система с астатизмом 1-го порядка СТРУКТУРНО-УСТОЙЧИВАЯ.

  1. Пусть

Всегда система неустойчива. Эта система СТРУКТУРНО-НЕУСТОЙЧИВАЯ.

Устойчивость САУ

Нули и полюсы передаточной функции

Корни полинома в числителе передаточной функции называются ну­лями , а корни полинома в знаменателе – полюсами передаточной функции. Полюсы одновременно корни характеристического уравнения , или характеристические числа .

Если корни числителя и знаменателя передаточной функции ле­жат в левой полуплоскости (при этом корни числителя и знаменателя лежат в верхней полуплоскости), то звено называется минимально-фазо­вым .

Соответствие левой полуплоскости корней р верхней полуплоскости корней (рис.2.2.1) объясняется тем, что , или , т.е. вектор получается из вектора поворотом на угол по часовой стрелке. В результате все векторы из левой полуплоскости приходят в векторы в верхней полуплоскости.

Неминимально-фазовые и неустойчивые звенья

Расмотренные выше звенья позиционного и дифферинцирующего типов относятся к устойчивым звеньям, или к звеньям с самовыравниванием.

Под самовыравниванием понимается способность звена самопро-извольно приходить к новому установившемуся значению при ограниченном изменении входной величины или возмущающего воздействия. Обычно термин самовыравнивание применяется для звеньев, являющихся объектами регулирования.

Существуют звенья, у которых ограниченное изменение входной величины не вызывает прихода звена к новому установившемуся состоянию, а выходная величина имеет тенденцию неограниченного возрастания во времени. К ним, например, относятся звенья интегрируюшего типа.

Существуют звенья, у которых этот процесс выражен еще заметнее. Это объясняется наличием положительных вещественных или комплексных корней с положительной вещественной частью в характеристическом уравнении (знаменателе передаточной функции, приравненом нулю), в результате чего звено будет относиться к категории неустойчивых звеньев .

Например, в случае дифференциального уравнения , имеем передаточная функция и характеристическое уравнение с положительным вещественным корнем . Это звено имеет одинаковую амплитудно-частотную характеристику с инерционным звеном с передаточной функцией. Но фазо-частотные характеристики этих звеньев совпадают. Для инерционного звена имеем . Для звена с передаточной функцией имеем

т.е. большее по абсолютной величине значение.

В связи с этим неустойчивые звенья относятся к группе не минимально-фазовых звеньев .

К не минимально-фазовым звеньям относятся также устойчивые звенья, имеющие в числителе передаточной функции (соответствующем правой части дифференци­ального уравнения) вещественные положительные корни или комплексные корни с положительной вещественной частью.

Например, звено с передаточной функцией относится к группе не минимально–фазовых звеньев. Модуль частотной передаточной функции совпадает с модулем частотной передаточной функции звена, имеющего переда­точную функцию . Но фазовый сдвиг первого звена по абсо­лютной величине больше:

Минимально-фазовые звенья имеют меньшие фазовые сдвиги по сравнению с соответствующими звеньями, имеющими такие же амплитудные частотные характеристики.

Говорят, что система устойчива или обладает самовыравниванием, если после снятия внешнего возмущения она возвращается в исходное состояние.

Так как движение системы в свободном состоянии описывается однородным дифференциальным уравнением, то мате­матическое определение устойчивой системы можно cфоpмулировать следующим образом:

Система называется асимптотически устойчивой, если выполняется условие (2.9.1)

Из анализа общего решения (1.2.10) вытекает необходимое и до­статочное условие устойчивости:

Для устойчивости системы необходимо и достаточно, чтобы все корни характеристического уравнения имели строго отрицательные вещественные части, т.е. Rep i , I = 1…n . (2.9.2)

Для наглядности корни характеристического уравнения принято изображать на комплексной плоскости рис.2.9.1а. При выполнении не­обходимого и достаточн

Рис.8.12. Плоскость корней

характеристического

уравнения A (p ) = 0

ОУ- область устйчивости

Ого условия (2.9.2) все корни лежат слева от мнимой оси, т.е. в области устойчивости.


Поэтому условие (2.9.2) можно сформулировать следующим обра­зом.

Для устойчивости необходимо и достаточно, чтобы все корни характеристического уравнения располагались в левой полуплоскос­ти.

Строгое общее опреде­ление устойчивости, методы исследования устойчивости нелинейных систем и возможность распространения заключения об устойчивости линеаризованной системы на исходную нелинейную систему даны рус­ским ученым А.М.Ляпуновым.

На практике устойчивость часто определяется косвенным пу­тем, с помощью так называемых критериев устойчивости без непос­редственного нахождения корней характеристического уравнения. К ним относятся алгебраические критерии: условие Стодолы, критерии Гурвица, Михайлова, а также частотный критерий Найквиста. При этом критерий Найквиста позволяет определять устойчивость замкнутой системы по АФХ или по логарифмическим характеристикам разомкнутой системы.

Условие Стодолы

Условие получено словацким математиком Стодолой в конце 19-го столетия. Оно интересно в методическом плане для понимания условий устойчивости системы.

Запишем характеристическое уравнение системы в виде

D(p) = a 0 p n + a 1 p n- 1 +…a n = 0. (2.9.3)

По Стодоле для устойчивости необходимо, но недостаточно, чтобы пpи a 0 > 0 все остальные коэффициенты были строго положительны, т.е.

a 1 > 0 ,..., a n > 0.

Необходимость можно сформировать так:

Если система устойчива, то все корни характеристического уравнения имеют , т.е. являются левыми.

Доказательство необходимости элементарное. По теореме Безу характеристический полином можно представить в виде

Пусть , т.е действительное число, а – комплексно-сопряженные корни. Тогда

Отсюда видно, что в случае полинома с действительными коэффициентами комплексные корни попарно-сопряженные. При этом, если , , то имеем произведение многочленов с положительными коэффициентами, которое дает многочлен только с положительными коэффициентами.

Недостаточность условия Стодолы заключается в том, что условие не гарантирует, что все . В этом можно убедиться на конкретном примере, рассмотрев полином степени .

Заметим, что в случае условие Стодолы одновременно необходимо и достаточно. Из вытекает . Если , то и , чтобы .

Для из анализа формулы корней квадратного уравнения также вытекает достаточность условия.

Из условия Стодолы вытекает два важных следствия.

1. Если условие выполняется, а система неустойчива, то переходный процесс имеет колебательный характер. Это следует из того, что уравнение с положительными коэффициентами не может иметь действительных положительных корней. По определению корень – это число, обращающее характеристический полином в нуль. Никакое положительное число не может обратить в нуль многочлен с положительными коэффициентами, то есть быть его корнем.

2. Положительность коэффициентов характеристического полинома (соответственно выполнение условия Стодолы) обеспечивается в случае отрицательной обратной связи, т.е. в случае нечетного числа инверсий сигнала по замкнутому контуру. В этом случае характеристический полином. В противном случае имели и после приведения подобных некоторые коэффициенты могли оказаться отрицательными.

Заметим, что отрицательная обратная связь не исключает возможности невыполнения условия Стодолы. Например, если , а , то в случае единичной отрицательной обратной связи . В данном полиноме коэффициент при равен нулю. Отрицательных коэффициентов нет, но, тем не менее, условие не выполняется, так как оно требует строго выполнения неравенств.

Это подтверждает и следующий пример.

Пример 2.9.1. Применить условие Стодолы к схеме рис. 2.9.2.

Передаточная функция разомкнутой по цепи единичной отрица­тельной обратной связи системы равна и характеристичес­кое уравнение замкнутой системы есть сумма числителя и знаменателя, т. е.

D(p) = p 2 + k 1 k 2 = 0.

Так как отсутствует член с р в первой степени (a 1 = 0), то условие Стодолы не выполняется и система неустойчива. Данная система структурно неустойчива, так как ни при каких значениях параметров k 1 и k 2 не может быть устойчивой.

Чтобы сделать систему устойчивой, нужно ввести дополнительную связь или корректирующее звено, т.е. изменить структуру системы. Покажем это на примерах. На рис. 2.9.3. звено прямой цепи представлено последовательно включенными звеньями с передаточными функциями и . Параллельно первому введении дополнительная связь.

П
ередаточная функция разомкнутой по единичной отрицательной связи системы и характеристическое уравнение замкнутой системы соответственно равна

,

Теперь условие Стодолы выполняется при любых . Так как в случае уравнения второй степени оно не только необходимо, но и достаточно, то система устойчива при любых положительных коэффициентах усиления .

На рис.2.9.4 в схему введено последовательно форсирующее звено. Передаточная функция разомкнутой по цепи единичной отрицательной связи системы в этом случае равна и характеристическое уравнение замкнутой системы равно

Аналогично предыдущему система устойчива при любых положительных .

Критерий устойчивости Раусса-Гурвица

Математики Раусс (Англия) и Гурвиц (Швейцария) разработали этот критерий приблизительно в одно время. Отличие заключалось в алгоритме вычислений. Мы познакомимся с критерием в формулировке Гурвица.

По Гурвицу для устойчивости необходимо и достаточно, что­бы при a 0 > 0 определитель Гурвица = n и все его главные миноры 1 , 2 ,..., n -1 были строго положительны, т.е.

(2.9.4)

Cтруктура определителя Гурвица легко запоминается, если учесть, что по главной диагонали расположены коэффициенты а 1 ,… n , в строчках расположены коэффициенты через один, если они исчерпаны, то свободные места заполняются нулями.

Пример 2.9.2 . Исследовать на устойчивость по Гурвицу систему с единичной отрицательной обратной связью, в прямой цепи которой включены три инерционных звена и, следовательно, передаточная функция разомкнутой системы имеет вид (2.9.5)

Запишем характеристическое уравнение замкнутой системы как сумму числителя и знаменателя (2.9.5):

Следовательно,

Определитель Гурвица и его миноры имеют вид

с учетом a 0 > 0 из строгой положительности определителя Гурвица и миноров (2.9.6) вытекает условие Стодолы и, кроме того, условие a 1 a 2 - a 0 a 3 > 0, что после подстановки значений коэффициентов дает

1 Т 2 + Т 1 Т 3 2 Т 3 )(Т 1 2 3 ) > Т 1 Т 2 Т 3 (1+ k ) . (2.9.7)

Отсюда видно, что при увеличении k система из устойчивой может превратиться в неустойчивую, так как неравенство (2.9.7) переста­нет выполняться.

Передаточная функция системы по ошибке равна

Согласно теореме о конечном значении оригинала установившаяся ошибка отработки единичного ступенчатого сигнала будет равна 1/(1+k ). Следовательно, обнаруживается противоречие между ус­тойчивостью и точностью. Для уменьшения ошибки надо увеличивать k , но это приводит к потере устойчивости.

Принцип аргумента и критерий устойчивости Михайлова

Критерий Михайлова основан на так называемом принципе аргумента.

Рассмотрим характеристический полином замкнутой системы, который по теореме Безу можно представить в виде

D(p) = a 0 p n + a 1 p n- 1 +…+ a n = a 0 (p - p 1 )…(p - p n ).

Сделаем подстановку p = j

D(j ) = a 0 (j ) n + a 1 (j ) n- 1 +…+ a n = a 0 (j - p 1 )…(j - p n ) = X()+jY().

Для конкретного значения имеет точку на комплексной плоскости, задаваемую параметрическими уравнениями

Е
сли изменять в диапазоне от - до , то будет прочерчена кривая Михайлова, т. е. годограф. Изучим поворот вектора D(j ) при изменении от - до , т. е. найдем приращение аргумента вектора (аргумент равен сумме для произведения векторов): .

При = -  разностный вектор, начало которого в точке р i , а конец на мнимой оси, направлен вертикально вниз. По мере роста конец вектора скользит вдоль мнимой оси, а при =  вектор направлен вертикально вверх. Если корень левый (рис. 2.9.19а), то arg = + , а если корень правый, то arg = - .

Если характеристическое уравнение имеет m правых корней (соответственно n - m левых), то .

Это и есть принцип аргумента. При выделении действительной части Х() и мнимой Y() мы отнесли к Х() все слагаемые, содержащие j в четной степени, а к Y() – в нечетной степени. Поэтому кривая Михайлова симметрична относительно действительной оси (Х() – четная, Y() – нечетная функция). В результате, если изменять от 0 до +, то приращение аргумента будет в два раза меньше. В связи с этим окончательно принцип аргумента формулируется следующим образом . (2.9.29)

Если система устойчива, т.е. m = 0, то получаем критерий устойчивости Михайлова.

По Михайлову для устойчивости необходимо и достаточно, чтобы

, (2.9.30)

то есть кривая Михайлова должна последовательно проходить через n

Очевидно, что для применения критерия Михайлова не требуется точного и детального построения кривой. Важно установить, каким образом она огибает начало координат и не нарушается ли последовательность прохождения n четвертей против часовой стрелки.

Пример 2.9.6. Применить критерий Михайлова для проверки устойчи­вости системы, показанной на рис.2.9.20.

Характеристический полином замкнутой системы при k 1 k 2 > 0 соответствует устойчивой системе, так условие Сто­долы выполняется, а для n = 1 оно достаточно. Можно непосред­ственно найти корень р 1 = - k 1 k 2 и убедиться, что необходимое и достаточное условие устойчивости выполнено. Поэтому применение критерия Михайлова носит иллюстративный характер. Полагая p = j , получим

D (j ) = X ()+ jY (),

где Х() = ; Y () = . (2.9.31)


По параметрическим уравнениям (2.9.31) построен годограф Ми­хайлова на рис.2.9.21, из которого видно, что при изменении от 0 до  вектор D (j ) поворачивается против часовой стрел­ки на +/2 , т.е. система устойчива.

Критерий устойчивости Найквиста

Как уже было отмечено, кри­терий Найквиста занимает особое положение среди критериев устойчивости. Это частотный критерий, позволяющий определить устойчивость замкнутой системы по частотным характеристикам ра­зомкнутой. При этом предполагается, что система разомкнута по цепи единичной отрицательной обратной связи (рис.2.9.22).

Одним из достоинств критерия Найквиста является то, что частотные характеристики разомкнутой системы могут быть получены экспери­ментально.

Вывод критерия основан на использовании принципа аргумента. Передаточная функция разомкнутой системы (по цепи единичной от­рицательной обратной связи на рис.2.9.22) равна

Рассмотрим . (2.9.32)

В случае реальной системы с ограниченной полосой про­пускания степень знаменателя передаточной функции разомкнутой системы п больше степени числителя , т.е. n > . Поэтому степени характеристических полиномов разомкнутой системы и замкнутой системы одинаковы и равны n . Переход от АФХ разомкнутой системы к АФХ по (2.9.32) означает увеличение вещественной части на 1, т.е. перенос начала координат в точку (-1, 0), как показано на рис.2.9.23.

Предположим теперь, что замкнутая система устойчива, а характеристическое уравнение разомкнутой системы А(р) = 0 имеет m правых корней. Тогда в соответствии с принципом аргумента (2.9.29) получим необходимое и достаточное условие устойчивости замкнутой системы по Найквисту

Т.е. для устойчивости замкнутой системы вектор W 1 (j ) дол­жен делать m /2 полных оборотов против часовой стрелки, что равносильно повороту вектора W pa з (j ) относительно крити­ческой точки (-1,0).

На практике, как правило, разомкнутая система устойчива, т.е. m = 0. В этом случае приращение аргумента равно нулю, т.е. АФХ разомкнутой системы не должна охватывать критическую точку (-1,0).

Критерий Найквиста для ЛАХ и ЛФХ

На практике чаще используются логарифмические характеристики разомкнутой системы. Поэтому целесообразно сформулировать критерий Найквиста для определения устойчивости замкнутой системы по ним. Количество оборотов АФХ относитель­но критической точки (-1,0) и охват или не охват ее

зависят от количества положительных и отрицательных пересечений интервала (-,-1) действительной оси и соответственно пересечений фазовой характеристикой линии -180° в области L ()  0 . На рис.2.9.24 изображены АФХ и показаны знаки пересечений отрезка (-,-1) действительной оси.

Спра­ведливо правило

где - число положительных и отрицательных пересечений.

По АФХ рис.2.9.24в построены ЛАХ и ЛФХ, изображенные на рис.2.9.25, причем на ЛФХ отмечены положительные и отрицательные пересечения. На отрезке (-,-1) модуль больше единицы, чему соответствует L () > 0. Поэтому Критерий Найквиста:

Для устойчивости замкнутой системы ЛФХ разомкнутой системы в области, где L () > 0, должна иметь положительных пересечений линии -180° на больше, чем отрицательных.

Если разомкнутая система устойчива, то число положительных и отрицательных пересечений фазовой характеристикой линии -180° в области L () > 0 для устойчивости замкнутой системы должно быть одинаковым или пересечений не должно быть.

Критерий Найквиста для астатической системы

Особо необходимо рассмотреть случай астатической системы порядка r с передаточной функцией разомкнутой системы, равной

.

В этом случае при 0, т. е. амплитудно-фазовая характеристика (АФХ) разомкнутой системы уходит в бесконечность. Раньше мы строили АФХ при изменении от - до  и это была непрерывная кривая, замкнутая при =  0. Теперь она также замыкается при = 0, но на бесконечности и при этом не ясно, с какой стороны действительной оси (на бесконечности слева или справа?).

Рис.2.9.19в иллюстрирует, что в этом случае возникает неопределенность в подсчете приращения аргумента разностного вектора. Он теперь все время расположен вдоль мнимой оси (совпадает с j ). Только при переходе через нуль изменяется направление (при этом поворот вектора против часовой стрелки на или по часовой стрелке на -?), Для определенности считаем условно, что корень левый и огибание начала координат происходит по дуге бесконечно малого радиуса против часовой стрелки (поворот на +). Соответственно в окрестности = 0 представим в виде

,

где = + при изменении от – 0 до + 0. Последнее выражение показывает, что при таком раскрытии неопределенности АФХ поворачивается при изменении от – 0 до + 0 на угол - по часовой стрелке. Соответственно построенную АФХ надо при = 0 дополнить дугой бесконечности радиуса на угол , т. е. против часовой стрелки до положительной действительной полуоси.

Запасы устойчивости по модулю и фазе

Чтобы гарантировать устойчивость при изменениях параметров системы вводятся запасы устойчивости по модулю и фазе, определяемые следующим образом.

Запас устойчивости по модулю показывает во сколько раз или на сколько децибел допустимо увеличивать или уменьшать коэффи­циент усиления, чтобы система оставалась устойчивой (оказывалась на границе устойчивости). Он определяется как min(L 3 , L 4) на рис.2.9.25. Действительно, если не менять ЛФХ, то при подъеме ЛАХ на L 4 частота среза ср переместится в точку 4 и система окажется на границе устойчивости. Если опустить ЛАХ на L 3 , то частота среза сместится влево в точку 3 и система также окажется на границе устойчивости. Если опустить ЛАХ еще ниже, то в области L () > 0 останется только отрицательное пересечение ЛФХ линии -180°, т.е. по критерию Найквиста система станет неустойчивой.

Запас устойчивости по фазе показывает, на сколько допустимо увеличить фазовый сдвиг при неизменном коэффициенте усиления, чтобы система оставалась устойчивой (оказалась на границе устойчивости). Он определяется как дополнение ( ср) до -180°.

На практике L  12-20 дБ,  20-30°.