Пластинчатая костная ткань гистология. Костная ткань

Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом (рис. 6-3). В надкост­нице разли­чают два слоя: наружный (волокнистый) – образо­ван в основном волокнистой соедини­тельной тканью и внут­ренний (клеточ­ный) – содержит клетки остеобласты. Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые во­локна, которые получили название прободающих во­локон. Чаще всего эти волокна разветвляются только в наружном слое об­щих пластинок. Надкостница связывает кость с окру­жающими тканями и принимает участие в ее трофике, разви­тии, росте и регенерации.

Компактное вещество, образующее диафиз кости, со­стоит из костных пластинок, располагающихся в опре­делен­ном порядке, образуя три слоя:

    наружный слой общих пластинок . В нем пластинки не об­разуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.

    средний , остеонный слой - образо­ван концентрически на­слоенными вокруг сосудов кост­ными пластинками. Такие структуры называются остеонами , а пластинки, их обра­зующие - остеонные пластинки . Остеоны являются струк­турной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так назы­ваемой спайной линией. В цент­ральном канале остеона про­ходят кровеносные сосуды с сопровож­дающей их соедини­тельной тканью. Все остеоны в основном расположены па­раллельно длинной оси кости. Каналы остеонов анастомози­руют друг с другом. Сосуды, расположенные в каналах ос­теонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вста­вочные пластинки (остатки ста­рых разрушенных остеонов), которые лежат между остео­нами.

    внутренний слой общих пластинок хорошо развит толь­ко там, где компактное вещество кости непосредственно граничит с костномозговой полостью.

Изнутри компактное вещество диафиза покрыто эндо­стом, имеющем такое же строение, как и периост.

Рис. 6-3. Строение трубчатой кости. А. Надкостница. Б. Компакное вещество кости. В. Эндост. Г. Костномозговая полость. 1. Наружный слой общих пластинок. 2. Остеонный слой. 3. Остеон. 4. Канал остеона. 5. Вставочные пластинки. 6. Внутренний слой общих пластинок. 7. Костная трабекула губчатой ткани. 8. Волокнистый слой надкостницы. 9. Кровеносные сосуды надкостницы. 10. Прободающий канал. 11. Остеоциты. (Схема по В. Г. Елисееву, Ю. И. Афанасьеву).

Рост трубчатых костей – процесс очень медлен­ный. Он начинается у человека с ранних эмбриональных стадий и за­канчивается в среднем к 20-летнему возрасту. В течение всего пери­ода роста кость увеличивается как в длину, так и в ширину. Рост трубчатой кости в длину обеспечивается нали­чием метаэпифизарной хрящевой пластинки роста, в кото­рой проявляются два противоположных гистогенетических процесса. Один – это разрушение эпифизарной пластинки и другой, противоположный ему, - постоянное пополнение хрящевой ткани путем новообра­зования. Однако с течением времени процессы разрушения хрящевой пластинки начи­нают преобладать над процессами новообразования в ней, вследствие чего хрящевая пластинка истончается и исчезает.

Регенерация. Физиологическая регенерация костной ткани осуществляется за счет остеобластов надкостницы. Однако этот процесс идет очень медленно.

Костные ткани (textus ossei) -- это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция. В костной ткани обнаружено более 30 микроэлементов (медь, стронций, цинк, барий, магний и др.), играющих важнейшую роль в метаболических процессах в организме.

Органическое вещество -- матрикс костной ткани -- представлено в основном белками коллагенового типа и липидами. По сравнению с хрящевой тканью в нем содержится относительно небольшое количество воды, хондроитинсерной кислоты, но много лимонной и других кислот, образующих комплексы с кальцием, импрегнирующим органическую матрицу кости.

Таким образом, твердое межклеточное вещество костной ткани (в сравнении с хрящевой тканью) придает костям более высокую прочность, и в тоже время - хрупкость.

Органические и неорганические компоненты в сочетании друг с другом определяют механические свойства костной ткани -- способность сопротивляться растяжению и сжатию.

Несмотря на высокую степень минерализации, в костных тканях происходят постоянное обновление входящих в их состав веществ, постоянное разрушение и созидание, адаптивные перестройки к изменяющимся условиям функционирования. Морфофункциональные свойства костной ткани меняются в зависимости от возраста, физических нагрузок, условий питания, а также под влиянием деятельности желез внутренней секреции, иннервации и других факторов.

Классификация

Существует два основных типа костной ткани:

  • · ретикулофиброзная (грубоволокнистая),
  • · пластинчатая.

Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества. В грубоволокнистой ткани коллагеновые волокна образуют толстые пучки, идущие в разных направлениях, а в пластинчатой ткани костное вещество (клетки, волокна, матрикс) образуют системы пластинок.

К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.

Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее - из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, - гематогенное происхождение.

Костный дифферон и остеогистогенез

Развитие костной ткани у эмбриона осуществляется двумя способами:

  • 1) непосредственно из мезенхимы, - прямой остеогенез;
  • 2) из мезенхимы на месте ранее развившейся хрящевой модели кости, - это непрямой остеогенез.

Постэмбриональное развитие костной ткани происходит при ее физиологической и репаративной регенерации.

В процессе развития костной ткани образуется костный дифферон:

  • · стволовые клетки,
  • · полустволовые клетки (преостеобласты),
  • · остеобласты (разновидность фибробластов),
  • · остеоциты.

Вторым структурным элементом являются остеокласты (разновидность макрофагов), развивающиеся из стволовых клеток крови.

Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.

Остеобласты (от греч. osteon -- кость, blastos -- зачаток), -- это молодые клетки, создающие костную ткань. В кости они встречаются только в надкостнице. Они способны к пролиферации. В образующейся кости остеобласты покрывают почти непрерывным слоем всю поверхность развивающейся костной балки.

Форма остеобластов бывает различной: кубической, пирамидальной или угловатой. Размер их тела около 15--20 мкм. Ядро округлой или овальной формы, часто располагается эксцентрично, содержит одно или несколько ядрышек. В цитоплазме остеобластов хорошо развиты гранулярная эндоплазматическая сеть, митохондрии и аппарат Гольджи. В ней выявляются в значительных количествах РНК и высокая активность щелочной фосфатазы.

Остеоциты (от греч. osteon -- кость, cytus -- клетка) -- это преобладающие по количеству зрелые (дефинитивные) клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, компактное, относительно крупное ядро и слабобазофильную цитоплазму. Органеллы развиты слабо. Наличие центриолей в остеоцитах не установлено.

Костные клетки лежат в костных лакунах, которые повторяют контуры остеоцита. Длина полостей колеблется от 22 до 55 мкм, ширина -- от 6 до 14 мкм. Канальцы костных лакун заполнены тканевой жидкостью, анастомозируют между собой и с периваскулярными пространствами сосудов, заходящих внутрь кости. Обмен веществ между остеоцитами и кровью осуществляется через тканевую жидкость этих канальцев.

Остеокласты (от греч. osteon -- кость и clastos -- раздробленный), - это клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость. Диаметр их достигает 90 мкм и более, и они содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, иногда оксифильна. Остеокласты располагаются обычно на поверхности костных перекладин. Та сторона остеокласта, которая прилежит к разрушаемой поверхности, богата цитоплазматическими выростами (гофрированная каемка); она является областью синтеза и секреции гидролитических ферментов. По периферии остеокласта находится зона плотного прилегания клетки к костной поверхности, которая как бы герметизирует область действия ферментов. Эта зона цитоплазмы светлая, содержит мало органелл, за исключением микрофиламентов, состоящих из актина.

Периферический слой цитоплазмы над гофрированным краем содержит многочисленные мелкие пузырьки и более крупные -- вакуоли.

Полагают, что остеокласты выделяют СО2 в окружающую среду, а фермент карбоангидраза способствует образованию угольной кислоты (Н2СО3) и растворению кальциевых соединений. Остеокласт богат митохондриями и лизосомами, ферменты которых (коллагеназа и другие протеазы) расщепляют коллаген и протеогликаны матрикса костной ткани.

Считается, что один остеокласт может разрушить столько кости, сколько создают 100 остеобластов за это же время. Функции остеобластов и остеокластов взаимосвязаны и регулируются гормонами, простагландинами, функциональной нагрузкой, витаминами и др.

Межклеточное вещество (substantia intercellularis) состоит из основного аморфного вещества, импрегнированного неорганическими солями, в котором располагаются коллагеновые волокна, образующие небольшие пучки. Они содержат в основном белок -- коллаген I и V типов. Волокна могут иметь беспорядочное направление - в ретикулофиброзной костной ткани, или строго ориентированное направление - в пластинчатой костной ткани.

костный ткань остеогистогенез кровь клетка

Занятие № 10

Движение. Структура опорно-двигательной системы. Профилактика её заболеваний

II. Скелет

III. Мышечный аппарат

Строение мышц

2) Группы мышц

I. Функциональная структура опорно-двигательной системы

1) Опора тела

2) Перемещение тела или его частей в пространстве

3) Защитная (защита внутренних органов, головного и спинного мозга и др.)

Основные принципы функционирования системы

1) Основные принципы функционирования скелета: работает в соответствии с законами механики

2) Основные принципы функционирования мышечного аппарата:

А) произвольный (сознательный) характер сокращения

Б) большинство мышц сгруппировано в функциональные комплексы - агонисты (осуществляют перемещение организма или его части в одном направлении) и антагонисты (осуществляют перемещение организма или его части в противоположных направлениях); согласованная работа этих мышечных комплексов достигается благодаря координации процессов возбуждения и торможения в нейронах соответствующих соматических дуг)

В) при чрезмерных нагрузках на мышцы в них развивается состояние утомления; возникающие при этом мышечные боли и чувство утомления связывают с относительным дефицитом кислорода в ткани мышц (доставка отстает от потребления), активацией гликолиза, образованием избыточных количеств молочной кислоты и ее выходом в общий кровоток

3) Регуляторные механизмы

А) нервная регуляция опорно-двигательной системы осуществляется соматическим отделом нервной системы

Б) основной принцип регуляции - рефлекторный (соматические рефлекторные дуги замыкаются на уровне спинного мозга и ствола головного мозга)

В) важную роль в деятельности соматической нервной системы играет средний мозг

В) высшим звеном системы регуляции движений является кора больших полушарий конечного мозга (кожно-мышечные зоны, локализованные по обе стороны от центральной борозды)

Г) наряду с вышеперечисленными нервными структурами важную роль в регуляции двигательной активности играют мозжечок, базальные ядра конечного мозга, лимбическая система.

II. Скелет

Насчитывает более 200 костей. Строение костей.

1) Классификация костей:

Плоские кости (пр.: лобные и теменные кости черепа, лопатка, грудина)

Трубчатые кости (пр.: бедренная, плечевая)

Анатомическое строение костей

Плоских костей: состоят из двух тонких пластинок, между которыми находится губчатое вещество

Трубчатых костей: в трубчатой кости различают два эпифиза, образованные губчатым веществом, и диафиз, построенный из компактного вещества. Эпифизы снаружи покрыты гиалиновым хрящом (часть суставного аппарата)

Диафиз снаружи покрыт надкостницей, изнутри, со стороны костномозговой полости - эндостом; надкостница выполняет защитную и трофическую функции, а также обеспечивает рост (в толщину) и регенерацию кости.

Гистологическое строение костей

Кости взрослого человека состоят из пластинчатой костной ткани; грубоволокнистая костная ткань встречается только в черепных швах и местах прикрепления сухожилий к костям. Общий план микроскопического строения костной ткани: элементарным структурным блоком пластинчатой костной ткани является костная пластинка, состоящая из множества параллельно ориентированных коллагеновых волокон, пропитанным фосфорнокислым кальцием, и клеток (в основном, остеоцитов). Из костных пластинок формируются структуры более высокого порядка - остеоны, генеральные пластинки и костные пакеты. Остеон представляет собой систему концентрических цилиндров, стенка которых образована костной пластинкой, в центре которой проходит канал, содержащий сосуды и нервные волокна. Важно отметить, что направления волокон в соседних цилиндрах не совпадает, что обеспечивает высокую механическую прочность конструкции в целом. Остеоны составляют основу компактного вещества трубчатых костей. Генеральные пластинки представляют собой множество (как правило, до десяти) протяженных костных пластинок, расположенных по внешнему и внутреннему периметрам диафиза трубчатых костей. Костный пакет представляют собой комплекс из нескольких костных пластинок. Множество костных пакетов формируют губчатое вещество плоских костей и эпифизов трубчатых костей, необходимо подчеркнуть, что внутренняя архитектура костей такова, что все их структурные элементы организованы в пространстве в соответствии с направлением силовых линий, благодаря чему достигается значительная прочность при относительно малой толщине костей.

Соединения костей

А) Непрерывные: характеризуются наличием прокладки между костями, состоящей из соединительной ткани (пр.: связки позвоночника), хряща (пр.: межпозвоночные диски), костной ткани (пр.: соединения лобных и теменных костей черепа),

Б) Прерывные: характеризуются следующим строением: между костями имеется полость, содержащая жидкость, которая уменьшает трение суставных поверхностей (последние, как указывалось выше, покрыты гиалиновым хрящём). Суставной аппарат включает в себя вспомогательные структуры, в частности, суставную сумку из соединительной ткани. Разновидности прерывных суставов: цилиндрический (пр.: сустав между I и II шейными позвонками), блоковидный (пр.: межфаланговый сустав), эллипсоидный (пр.: лучезапястный сустав), седловидный (пр.: запястно-пястный сустав большого пальца), плоский (пр.: сустав между плоскими отростками позвонков), шаровидный (пр.: тазобедренный сустав)

Отделы скелета

А) Скелет головы (череп) включает: мозговой отдел состоит из шести костей - одной лобной, двух теменных, двух височных, одной затылочной), лицевой отдел образован пятью основными костями - одной верхней челюстью, одной нижней челюстью, двумя скуловыми костями, одной небной костью.

Б) Скелет туловища представлен:

· позвоночником, построенным из отдельных позвонков, соединенных с помощью межпозвоночных дисков (состоят из волокнистого хряща, обеспечивают гибкость позвоночника, выполняют амортизирующую функцию). Отдельный позвонок представляет собой костное кольцо. Позвоночник состоит из пяти отделов: шейного (7 позвонков), грудного (12 позвонков), поясничного (5 позвонков), крестцового (5 сросшихся позвонков), копчикового (4-5 сросшихся позвонков). Позвоночник характеризуется S-образной формой, имеет четыре изгиба: два назад (кифозы) и два вперед (лордозы).

· грудной клеткой, включающей в себя грудной отдел позвоночника, грудину, 12 пар ребер (10 из них соединяются с грудиной, 2 - колеблющиеся)

В) скелет конечностей представленный верхними конечностями, состоящими из пояса верхних конечностей: 2 лопатки, 2 ключицы. Скелет свободной конечности: плечо (плечевая кость), предплечье (локтевая и лучевая кости), кисть (кости запястья, пястья, пальцев). Нижние конечности представлены поясом нижних конечностей, состоящих из таза (костное кольцо, состоящее из двух тазовых костей и крестца). Скелет свободной конечности: бедро (бедренная кость), голень (большая и малая берцовые кости), стопа (кости предплюсны, плюсны, пальцев).

III. Мышечный аппарат

Насчитывает более 400 мышц

Строение мышц

А) анатомическое строение. Мышца - орган, в котором различают сократительную часть (или тело, состоящее из головки, брюшка и хвоста) и сухожилия (построенное из плотной оформленной соединительной ткани), с помощью которых он прикрепляется к костям и др. структурам; снаружи мышца покрыта фасцией. Разновидности мышц:

· в зависимости от числа головок (двуглавые, например, двуглавая мышца плеча), трехглавые, например, трехглавая мышца плеча, четырехглавые, например, четырехглавая мышца бедра)

· по форме (длинные, например, двуглавая мышца плеча, короткие, например, короткие сгибатели пальцев кисти, широкие, например, диафрагма)

Гистологическое строение мышц:

Основу скелетных мышц составляет поперечнополосатая скелетная мышечная ткань, структурной единицей которой является мышечное волокно (симпласт)

Мышечное волокно покрыто тонкой соединительнотканной оболочкой, в которой проходят сосуды и нервы

Группы мышечных волокон формируют пучки различного ранга, разделенные прослойками соединительной ткани

В центре мышечного волокна находится его сократительный аппарат - множество параллельно ориентированных миофибрилл (органеллы специального значения)

Ядра и большинство органелл общего значения располагаются на периферии мышечного волокна

Миофибриллы характеризуются поперечной исчерченностью - регулярным чередованием светлых (I) и темных (A) дисков

Темные диски образованы миозиновыми фибриллами, светлые - актиновыми (последние крепятся к пластинке, проходящей посередине I-диска - Z-полоске)

Наименьшей повторяющейся единицей миофибриллы, способной к сокращению, является саркомер, включающий в себя половину I-диска, А-диск и половину I-диска (формула его имеет следующий вид: 1/2 I + A + 1/2

Механизм сокращения: тонкие актиновые фибриллы втягиваются толстыми миозиновыми фибриллами вглубь А-диска (теория скольжения); процесс нуждается в АТФ и ионах Са

Группы мыш

А) мышцы головы

I группа - мимические мышцы: лобные, круговые мышцы глаз и рта

II группа - жевательные мышцы: височные, жевательные, внутренние и наружные крыловидные

Б) мышцы шеи

Подкожная мышца (платизма), грудино-ключично-сосцевидные мышцы, подъязычные мышцы.

В) мышцы спины

Различают поверхностные (трапециевидная мышца, широчайшая мышца спины, ромбовидная мышца, зубчатые мышцы и мышцв, поднимающие лопатки) и глубокие (мышцы-выпрямители позвоночника и др.)

Г) мышцы живота

Прямая, поперечная и косые мышцы живота (все эти мышцы имеют широкие и плоские сухожилия, которые соединяясь между собой, формируют белую линию живота).

Мышцы брюшной стенки в совокупности образуют брюшной пресс, играющий важную роль в актах дефекации и мочеиспускания, а также в родовой деятельности

Д) мышцы груди

Большие и малые грудные мышцы, наружные и внутренние межреберные мышцы, диафрагма (с отверстиями для пищевода и сопровождающих его блуждающих нервов, трахеи, аорты, нижней полой вены, симпатического нервного ствола и некоторых других нервов и сосудов)

Е) мышцы плечевого пояса

Дельтовидные мышцы.

Ж) мышцы плеча

Двуглавая мышца плеча, плечевая мышца, трехглавая мышца плеча.

З) мышцы предплечья

Плечелучевая мышца, сгибатели кисти и пальцев, разгибатели кисти и пальцев.

И) мышцы кисти

Мышцы I -го пальца, V -го пальца, средняя группа мышц, обеспечивающая сгибание, разгибание и отведение фаланг.

К) мышцы тазового пояса

Большие, средние и малые ягодичные мышцы

Л) мышцы бедра

Четырехглавая мышца бедра, портняжная мышца, двуглавая мышца бедра, полусухожильная мышца, полуперепончатая мышца.

М) мышцы голени

Большеберцовая мышца, малоберцовые мышцы, трехглавая мышца голени (состоит из двух мышц: икроножной и камбаловидной).

Н) мышцы стопы.

Короткие разгибатели пальцев, внутренние, средние и наружные мышцы, обеспечивающие сгибание и боковые движения пальцев.


Похожая информация.


Костная ткань - важнейшая ткань в нашем организме. Она выполняет множество функций. Костную ткань в гистологии относят к разновидности скелетной соединительной ткани, к которой относится также хрящевая ткань. Клетки скелетных соединительных тканей, в том числе и костной, развиваются из мезенхимы.

Скелетные соединительные ткани

Скелетные соединительные ткани выполняют множество функций:

  1. Кости - это опора всего организма. Скелет позволяет человеку, состоящему целиком и полностью из мягких тканей, уверенно чувствовать себя в пространстве.
  2. Благодаря скелету мы можем двигаться. Мышцы крепятся к костям, которые, в свою очередь, образуют рычаги движения, позволяющие выполнять любые действия.
  3. Депо многих минеральных веществ находится именно в костной ткани. Костная ткань участвует в метаболизме фосфатов и кальция.
  4. В костях, а именно в красном костном мозге, происходит кроветворение.

Функции костной ткани в гистологии определяют как совпадающие с функциями всех скелетных соединительных тканей, однако у этой ткани есть ряд уникальных свойств.

Основной чертой и отличием костной ткани от других соединительных является высокое содержание в ней минеральных веществ, которое составляет 70 %. Этим объясняется прочность костей, ведь межклеточное вещество костной соединительной ткани находится в твердом состоянии.

Костные ткани. Химический состав костной ткани

Костную ткань нужно начать с изучения ее химического состава. Это позволит понять ее особенные свойства. Содержание органических веществ в ткани составляет от 10 до 20 %. Воды содержится от 6 % до 20 %, минеральных веществ, как было сказано выше, больше всего - до 70 %. Основные элементы минерального вещества кости - это фосфат кальция и гидроксиапатиты. Также высоко содержание минеральных солей.

Сочетание органических и неорганических веществ костной ткани объясняет прочность, упругость костей, их способность выдерживать большие нагрузки. В то же время слишком высокое содержание минеральных веществ придает костям значительную хрупкость.

Межклеточное вещество образовано на 95 % коллагеном I типа. На волокнах белка скапливаются органические вещества. Фосфопротеины способствуют накоплению ионов кальция в костях. Протеогликаны способствуют связыванию коллагена с минеральными соединениями, образованию которых, в свою очередь, помогает щелочная фосфатаза и остеонектин, стимулирующий дальнейший рост кристаллов неорганических соединений.

Клеточные компоненты

Клетки костной ткани в гистологии делят на три вида: остеобласты, остеоциты и остеокласты. Клеточные компоненты взаимодействуют между собой, образуя целостную систему.

Остеобласты

Остеобласты - это клетки кубической, овальной формы с эксцентрично расположенным ядром. Размер таких клеток составляет приблизительно 15-20 мкм. Органеллы развиты хорошо, выражена гранулярная ЭПС и комплекс Гольджи, что может объяснить активный синтез экспортируемых белков. В гистологии на препарате костной ткани цитоплазма клеток окрашивается базофильно.

Остеобласты локализуются на поверхности костных балок в образующейся кости, там же они остаются у зрелых костей в губчатом веществе. В сформированных костях остеобласты можно обнаружить в надкостнице, в эндосте, покрывающем костномозговой канал, в периваскулярном пространстве остеонов.

Остеобласты принимают участие в остеогенезе. Благодаря активному синтезу и экспорту белков образуется матрикс кости. Благодаря щелочной фосфатазе, которая активна в клетке, идет накопление минеральных веществ. Не стоит забывать о том, что остеобласты - это предшественники остеоцитов. Остеобласты выделяют матриксные пузырьки, содержимое которых запускает процесс образования кристаллов из минеральных веществ в костном матриксе.

Остеобласты делятся на активные и покоящиеся. Активные участвуют в остеогенезе и продуцируют компоненты матрикса. Покоящиеся остеобласты с эндостальной мембраной защищают костное вещество от остеокластов. Покоящиеся остеобласты могут активироваться при перестройки кости.

Остеоциты

Остеоциты - это зрелые, хорошо дифференцированные клетки костной ткани, располагающиеся по одной в лакунах, называемых еще костными полостями. Клетки овальной формы с многочисленными отростками. Размер остеоцитов составляет примерно 30 мкм в длину и до 12 в ширину. Ядро вытянутое, расположено по центру. Хроматин конденсирован, образует крупные глыбки. Органеллы развиты слабо, чем может объясняться малая синтетическая активность остеоцитов. Клетки соединяются друг с другом отростками посредством клеточных контактов нексусов, образуя синцитий. По отросткам происходит обмен веществами между тканью кости и кровеносными сосудами.

Остеокласты

Остеокласты, в отличие от остеобластов и остеоцитов, происходят из клеток крови. Остеоциты образуются при слиянии нескольких промоноцитов, поэтому некоторые авторы не считают их клетками и причисляют к симпластам.

По строению остеокласты представляют собой крупные чуть вытянутые клетки. Размер клеток может варьировать от 60 до 100 мкм. Цитоплазма может окрашиваться как оксифильно, так и базофильно, все зависит от возраста клеток.

В клетке можно выделить несколько зон:

  1. Базальная, содержащая основные органеллы и ядра.
  2. Гофрированная каемка из микроворсинок, проникающих в кость.
  3. Везикулярная зона, в которой содержатся разрушающие кость ферменты.
  4. Светлая зона прилипания, способствующая фиксированию клетки.
  5. Зона резорбции

Остеокласты разрушают костную ткань, участвуют в перестройке кости. Разрушение костного вещества, или, по-другому, резорбция, - важный этап перестройки, за которым следует образование нового вещества с помощью остеобластов. Локализация остеокластов совпадает с нахождением остеобластов, в углублениях на поверхностях костных балок, в эндосте и надкостнице.

Надкостница

Надкостница состоит из остеобластов, остеокластов и остеогенных клеток, которые участвуют в росте и восстановлении кости. Надкостница богата кровеносными сосудами, ветви которых обвивают кость, проникая в ее вещество.

В гистологии классификация костных тканей не очень обширна. Ткани делят на грубоволокнистую и пластинчатую.

Грубоволокнистая костная ткань

Грубоволокнистая костная ткань встречается в основном у ребенка до его рождения. У взрослого она остается в швах черепа, в зубных альвеолах, во внутреннем ухе, в местах прикрепления сухожилий к костям. Грубоволокнистая костная ткань в гистологии определяется предшественницей пластинчатой.

Ткань состоит из хаотично расположенных толстых пучков коллагеновых волокон, которые располагаются в матриксе, состоящем из неорганических веществ. В также находятся кровеносные сосуды, которые развиты достаточно слабо. Остеоциты расположены в межклеточном веществе в системах лакун и каналов.

Пластинчатая костная ткань

Все кости организма взрослого, за исключением мест прикрепления сухожилий и участков черепных швов, состоят из пластинчатой костной соединительной ткани.

В отличие от грубоволокнистой костной ткани, все компоненты пластинчатой структурированы и образуют костные пластинки. в пределах одной пластинки имеют одно направление.

Существует две разновидности пластинчатой костной ткани в гистологии - губчатая и компактная.

Губчатое вещество

В губчатом веществе пластинки объединяются в трабекулы, структурные единицы вещества. Дугообразные пластинки лежат параллельно друг другу, образуя бессосудистые костные балки. Пластинки ориентированы вдоль направления самих трабекул.

Трабекулы соединяются друг с другом под разными углами, образуя объемную структуру. В промежутках между костными балками располагаются костные ячейки, что делает это вещество пористым, объясняя название ткани. В ячейках находится красный костный мозг и сосуды, питающие кость.

Губчатое вещество находится во внутренней части плоских и губчатых костей, в эпифизах и внутренних слоях диафиза трубчатых.

Компактное костное вещество

Гистология пластинчатой костной ткани должна быть хорошо изучена, т. к. именно эта разновидность костной ткани является наиболее сложноустроенной и содержит множество разнообразных элементов.

Костные пластинки в компактном веществе расположены по окружности, они вкладываются друг в друга, образуя плотную стопку, где практически нет промежутков. Структурной единицей является остеон, образованный костными пластинами. Пластинки можно разделить на несколько видов.

  1. Наружные генеральные пластинки. Располагаются прямо под надкостницей, опоясывая всю кость. В губчатых и плоских костях компактное вещество может быть выражено только такими пластинками.
  2. Остеонные пластинки. Такой тип пластинок образует остеоны, концентрические пластины, лежащие вокруг сосудов. Остеон - основной элемент компактного вещества диафизов в трубчатых костях.
  3. Вставочные пластинки, являющиеся остатками разрушающихся пластинок.
  4. Внутренние генеральные пластинки окружают костномозговой канал с желтым костным мозгом.

Компактное вещество локализуется в поверхностном слое плоских и губчатых костей, в диафизе и поверхностных слоях эпифиза трубчатых костей.

Кость покрыта надкостницей, содержащий камбиальные клетки, благодаря которым кость растет в толщину. Также в надкостнице содержатся остеобласты и остеокласты.

Под накостницей лежит слой наружных генеральных пластинок.

В самом центре трубчатой кости располагается костномозговая полость, покрытая эндостом. Эндост покрывают внутренние генеральные пластинки, заключая его в кольцо. К костномозговой полости могут примыкать трабекулы губчатого вещества, поэтому в некоторых местах пластинки могут становиться менее выраженными.

Между наружным и внутренним слоями генеральных пластинок располагается остеонный слой кости. В центре каждого остеона находится Гаверсов канал с кровеносным сосудом. Гаверсовы каналы сообщаются между собой поперечными каналами Фолькмана. Пространство между пластинками и сосудом называется периваскулярным, сосуд покрывает рыхлая соединительная ткань, а в периваскулярном пространстве содержатся клетки, сходные с клетками надкостницы. Канал окружают слои остеонных пластинок. В свою очередь остеоны отделяются друг от друга резорбционной линией, которую нередко называют спайной. Также между остеонами находятся вставочные пластинки, представляющие собой остаточный материал остеонов.

Между пластинками остеона располагаются костные лакуны с заключенными в них остеоцитами. Отростки остеоцитов образуют канальцы, по которым перпендикулярно пластинам происходит транспорт питательных веществ в кости.

Волокна коллагена позволяют видеть в микроскоп костные каналы и полости, т. к. выстланные коллагеном участки прокрашиваются коричневым цветом.

В гистологии на препарате пластинчатая костная ткань окрашивается по Шморлю.

Остеогенез

Остеогенез бывает прямой и непрямой. Прямое развитие осуществляется из мезенхимы, из клеток соединительной ткани. Непрямое - из клеток хрящевой. В гистологии прямой остеогенез костной ткани рассматривается перед непрямым, т. к. является более простым и древним механизмом.

Прямой остеогенез

Из соединительной ткани развиваются кости черепа, мелкие кости кисти и другие плоские кости. В образовании костей таким способом можно выделить четыре стадии

  1. Образование скелетогенного зачатка. В первый месяц из сомитов в мезенхиму попадают стромальные стволовые клетки. Происходит размножение клеток, обогащение ткани сосудами. Под влиянием факторов роста клетки формируют скопления до 50 штук. Клетки секретируют белки, размножаются и растут. В стволовых стромальных клетках запускается процесс дифференцировки, они превращаются в остеогенные клетки-предшественницы.
  2. Остеоидная стадия. В остеогенных клетках происходит синтез белков и накопление гликогена, органелл становится больше, они активнее функционируют. Остеогенные клетки синтезируют коллаген и другие белки, например костный морфогенетический белок. Со временем клетки начинают реже размножаться и дифференцируются в остеобласты. Остеобласты участвуют в формировании межклеточного вещества, бедного минералами и богатого органическим веществом, остеоида. Именно на этой стадии появляются остеоциты и остеокласты.
  3. Минерализация остеоида. В этом процессе также участвуют остеобласты. В них начинает работать щелочная фосфатаза, активность которой способствует накоплению минеральных веществ. В цитоплазме появляются матриксные пузырьки, заполненные белком остеокальцином и фосфатом кальция. Минеральные вещества приклеиваются к коллагену благодаря остеокальцину. Трабекулы увеличиваются и, соединяясь друг с другом, образуют сеть, где еще остается мезенхима и сосуды. Получившаяся ткань называется первичной перепончатой тканью. Костная ткань является грубоволокнистой, формирует первичную губчатую кость. В эту стадию из мезенхимы образуется надкостница. Вблизи кровеносных сосудов надкостницы возникают клетки, которые затем будут участвовать в росте и регенерации кости.
  4. Образование костных пластинок. На этой стадии происходит замещение первичной перепончатой костной ткани на пластинчатую. Остеоны начинают заполнять промежутки между трабекулами. Из кровеносных сосудов в кость поступают остеокласты, которые образуют в ней полости. Именно остеокласты создают полость для костного мозга, влияют на форму кости.

Непрямой остеогенез

Непрямой остеогенез протекает при развитии трубчатых и губчатых костей. Для понимания всех механизмов остеогенеза нужно хорошо разбираться в гистологии хрящевой и костной соединительных тканей.

Весь процесс можно разбить на три этапа:

  1. Образование хрящевой модели. В диафизе хондроциты испытывают нехватку питательных веществ и становятся пузырчатыми. Выделяющиеся матриксные пузырьки приводят к обызвествлению В гистологии хрящевая и костная ткани взаимосвязаны. Они начинают заменять друг друга. Надхрящница становится надкостницей. Хондрогенные клетки переходят в остеогенные, которые, в свою очередь, становятся остеобластами.
  2. Образование первичной губчатой кости. На месте хрящевой модели возникает грубая волокнистая соединительная ткань. Также образуется перихондральное костное кольцо, костная манжета, где остеобласты образуют трабекулы прямо в месте диафиза. Из-за возникновения костной манжеты питание хряща становится невозможным, и хондроциты начинают погибать. Хрящевая и костная ткани в гистологии очень взаимосвязаны. Вслед за гибелью хондроцитов остеокласты образуют каналы от периферии кости к глубине диафиза, по которым идет движение остеобластов, остеогенных клеток и кровеносных сосудов. Начинается энхондральное окостенение, со временем переходящее в эпифизарное.
  3. Перестройка ткани. Первичная грубая волокнистая ткань постепенно переходит в пластинчатую.

Рост и развитие костной ткани

Рост кости у человека идет до 20 лет. Кость растет в ширину за счет надкостницы, в длину за счет метаэпифизарной пластинки роста. В метаэпифизарной пластинке можно выделить зону покоящегося хряща, зону столбчатого хряща, зону пузырчатого хряща и зону обызвествленного хряща.

Множество факторов влияет на рост и развитие костей. Это могут быть факторы внутренней среды, факторы внешней среды, недостаток или избыток определенных веществ.

Рост сопровождается резорбцией старой ткани и замещением ее новой молодой. В детском возрасте кости растут очень активно.

На рост костей влияет множество гормонов. Например, соматотропин стимулирует рост костей, но при его избытке может возникать акромегалия, при недостатке - карликовость. Инсулин необходим для правильного развития остеогенных и стволовых стромальных клеток. Половые гормоны также влияют на рост костей. Их повышенное содержание в раннем возрасте может привести к укорочению костей из-за раннего окостенения метаэпифизарной пластинки. Их пониженное содержание в зрелом возрасте может приводить к остеопорозу, повышать хрупкость костей. Гормон щитовидной железы кальцитонин приводит к активации остеобластов, паратирин увеличивает количество остеокластов. Тироксин влияет на центры окостенения, гормоны надпочечников - на процессы регенерации.

На рост костей оказывают влияние также некоторые витамины. Витамин C способствует синтезу коллагена. При гиповитаминозе можно наблюдать замедление регенерации костной ткани, гистология при подобных процессах может помочь выяснить причины заболевания. Витамин A ускоряет остеогенез, следует быть внимательными, потому что при гипервитаминозе наблюдается сужение костных полостей. Витамин D помогает организму усваивать кальций, при авитаминозе происходит искривление костей. При этом образовавшаяся ткань в гистологии сопровождается термином остеомаляция, также такие симптомы характерны для рахита у детей.

Перестройка кости

В процессе перестройки происходит замена грубоволокнистой соединительной ткани на пластинчатую, обновление костного вещества, регуляция содержания минеральных веществ. В среднем за год обновляется 8 % костного вещества, причем губчатая ткань обновляется в 5 раз интенсивнее, чем пластинчатая. В гистологии костной ткани механизмам перестройки костей отводится особое внимание.

Перестройка включает в себя резорбцию, разрушение тканей и остеогенез. С возрастом резорбция может преобладать. Этим объясняется остеопороз у пожилых людей.

Процесс перестройки состоит из четырех этапов: активации, резорбции, реверсии и формирования.

Регенерация костной ткани в гистологии рассматривается как разновидность перестройки костей. Этот процесс очень важен, но самое главное, зная факторы, влияющие на процесс регенерации, мы можем ускорять ее, что очень важно при переломах костей.

Знание гистологии, костных тканей человека полезно как врачам, так и обычным людям. Понимание некоторых механизмов может помочь даже в бытовых вещах, например в лечении переломов, в предотвращении травм. Строение костной ткани в гистологии достаточно хорошо изучено. Но все равно костные ткани далеко не полностью исследованы.

Костные ткани - специализированный тип соединитель­ной ткани с высокой минерализацией межклеточного веще­ства. Из этих тканей построены кости скелета.

Развитие кости (остеогенез)

Различают:

А) Эмбриональный остеогенез.

У эмбриона костная ткань развивается из мезенхимы двумя способами:

1). Прямой остеогистогенез (непосредственно из ме­зенхимы). Этим способом развиваются грубоволокнистая (ретикулофиброзная) костная ткань при образовании пло­ских костей. Такой процесс наблюдается в основном в тече­ние первого месяца внутриутробно­го развития и протекает в четыре стадии:

a) стадия образования остеогенного островка. Происхо­дит очаговое размножение мезенхимных клеток и формиро­вание в этом очаге сосудов (васкуляризация);

б) стадия остеоида. Осуществляется дифференцировка из мезенхимных клеток остеобластов, располагающихся по поверхности островка и остеоцитов – в глубине островка. Остеобласты образуют оксифильное межклеточное вещество с коллагеновыми фибриллами;

в) стадия кальцификации остеоида. В эту стадию пропи­тывание солями кальция (кристаллы гидроксиапатита) меж­клеточного вещества. В результате кальцификации образу­ются костные перекладины, или балки, прост­ранства между которыми заполняется волокнистой соедини­тельной тканью с проходящими в ней кровеносными сосудами.

г) стадии перестройки грубоволокнистой костной ткани в пластинчатую, связанную с ростом капилляров и образова­нием остеонов.

2). Непрямой остеогистогенез (из мезенхимы на месте ранее развившейся хрящевой модели кости) – на 2-м месяце эмбрионального раз­вития в местах будущих трубчатых кос­тей закладывается из ме­зенхимы хрящевой зачаток (гиали­новый хрящ, покрытый надхрящницей), который очень бы­стро принимает фор­му будущей кости.

Б) Постэмбриональ­ный остеогистогенез – осуществля­ется при регенерации.

Строение. Костные ткани состоят из:

А. Клеток:

1) Остеоциты – преобладающие по количеству клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, бедны органеллами. Располага­ются в костных полостях, или лакунах, которые повторяют контуры остеоцита. Отростки остеоцита проникают в ка­нальцы кости и играют роль в ее трофике.

2) Остео­бласты – молодые клетки, создающие костную ткань. В кости они встречаются в глубоких слоях надкост­ницы, в местах образования и регенерации костной ткани. Эти клетки бывают различной формы (кубической, пира­ми­дальной или угловатой), содержат одно ядро, а в цитоплазме хорошо развитую гранулярную эндоплазматическую сеть, митохондрии и комплекс Гольджи.

3) Остеокласты – клетки, способные разрушить обыз­вествленный хрящ и кость. Они имеют крупные размеры (диаметр их достигает 90 мкм), содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, богата мито­хондриями и лизосомами. Гранулярная эндоплазматическая сеть развита относительно слабо.

Б. Межклеточного вещества, состоящего из:

    основного вещества , где содержится относительно не­большое количество хондроитинсерной кислоты и много ли­монной и других кислот, образующих комплексы с кальцием (аморфный фосфат кальция, кристаллы гидроксиапатита).

    коллагеновых волокон , образующих не­большие пучки.

В зависимости от расположения коллагеновых волокон в межклеточном веществе костные ткани классифициру­ются на:

1. Ретикулофиброзную костную ткань. В ней коллаге­новые волокна имеют беспорядочное расположение. Такая ткань встречается главным образом у зародышей. У взрос­лых ее можно обнаружить на месте черепных швов и в мес­тах прикрепления сухожилий к костям.

2. Пластинчатую костную ткань. Это наиболее рас­пространенная разновидность костной ткани во взрослом ор­ганизме. Она состоит из костных пластинок , образованных костными клетками и минерализованным аморфным вещест­вом с коллагеновыми волокнами, ориентирован­ными в опре­деленном направлении. В соседних пластинках волок­на обычно имеют разное направление, благодаря чему достига­ется большая прочность пластинчатой костной ткани. Из этой ткани построены компактное и губчатое вещество большинства плоских и трубчатых костей скелета.