Подробная лекция про обмен белков биохимия. Обмен аминокислот

    Мы подошли к наиважнейшему аспекту в планировании питания спортсмена. Тема нашей статьи — белковые обменные процессы. В новом материале вы найдёте ответы на вопросы: что такое обмен белков, какую роль протеины и аминокислоты играют в организме и что бывает, если нарушается белковый метаболизм.

    Общая суть

    Из белка (протеина) состоит большая часть наших клеток. Это основа жизнедеятельности организма и его строительный материал.

    Белки регулируют следующие процессы:

    • мозговую деятельность;
    • переваривание тригидроглицеридов;
    • синтез гормонов;
    • передачу и хранение информации;
    • движение;
    • защиту от агрессивных факторов;

    Примечание: наличие белка напрямую связано с синтезом инсулина. Без достаточного количества , из которых синтезируется этот элемент, повышение сахара в крови становится лишь вопросом времени.

    • создание новых клеток — в частности, за счет белковых структур регенерируют клетки печени;
    • транспортировку липидов и других важных соединений;
    • преобразование липидных связей в смазочные материалы для суставов;
    • контроль метаболизма.

    И еще десятки различных функций. Фактически белок – это мы. Поэтому люди, которые отказываются от употребления мяса и других животных продуктов, все равно вынуждены искать альтернативные источники белка. В противном случае, их вегетарианская жизнь будет сопровождаться дисфункциями и патологическими необратимыми изменениями.

    Как бы это странно не звучало, но небольшой процент белка есть во многих продуктах. Например, крупы (все, за исключением манной) имеют в своем составе до 8% белка, пусть и с неполным аминокислотным составом. Это частично компенсирует дефицит белка, если вы хотите сэкономить на мясе и спортивном питании. Но помните, что организму нужны разные белки — одной гречкой не удовлетворить потребности в аминокислотах. Не все белки расщепляются одинаково и все по разному влияют на деятельность организма.


    В пищеварительном тракте белок расщепляется под воздействием специальных ферментов, которые тоже состоят из белковых структур. Фактически, это замкнутый круг: если в организме есть длительный дефицит белковых тканей, то и новые белки не смогут денатурировать до простых аминокислот, что вызовет еще больший дефицит.

    Важный факт: белки могут участвовать в энергетическом обмене наравне с липидами и углеводами. Дело в том, что глюкоза — необратимая и самая простейшая структура, которая превращается в энергию. В свою очередь белок, пускай и со значительными энергетическими потерями в процессе окончательной денатурации, может быть превращен в . Другими словами, организм в критической ситуации способен использовать белок в качестве топлива.

    В отличие от углеводов и жиров, белки усваиваются ровно в том количестве, которое необходимо для функционирования организма (включая поддержание постоянного анаболического фона). Никаких протеиновых излишков организм не откладывает. Единственное, что может изменить этот баланс – это прием и аналогов гормона тестостерона (анаболических стероидов). Первичная задача таких препаратов – вовсе не повышение силовых показателей, а увеличение синтеза АТФ и белковых структур, за счет чего и .

    Этапы белкового обмена

    Белковые обменные процессы гораздо сложнее углеводных и . Ведь если углеводы – это всего лишь энергия, а жирные кислоты поступают в клетки практически в неизменном виде, то главный строитель мышечной ткани претерпевает в организме целый ряд изменений. На некоторых этапах по белок и вовсе может метаболизироваться в углеводы и, соответственно, в энергию.

    Рассмотрим основные этапы обмена белков в организме человека, начиная с их поступления и запечатывания слюной денатурата будущих аминокислот и заканчивая конечными продуктами жизнедеятельности.

    Примечание: мы поверхностно рассмотрим биохимические процессы, которые позволят понять сам принцип переваривания белков. Для достижения спортивных результатов этого будет достаточно. Однако при нарушениях белкового обмена лучше обратится к врачу, который определит причину патологии и поможет устранить её на уровне гормонов или синтеза самих клеток.

    Этап Что происходит Суть
    Первичное попадание белков Под воздействием слюны расщепляются основные гликогеновые связи, превращаясь в простейшую глюкозу, остальные фрагменты запечатываются для последующей транспортировки. На этом этапе основные белковые ткани в составе продуктов питания выделяются в отдельные структуры, которые затем будут перевариваться.
    Переваривание белков Под воздействием панкреатина и других ферментов происходит дальнейшая денатурация до белков первого порядка. Организм настроен таким образом, что может получать аминокислоты только из простейших цепочек белков, для чего он воздействует кислотой, чтобы сделать белок более расщепляемым.
    Расщепление на аминокислоты Под воздействием клеток внутренней слизистой оболочки кишечника, денатурированные белки всасываются в кровь. Уже упрощенный белок организм расщепляет на аминокислоты.
    Расщепление до энергии Под воздействием огромного количества инсулиновых заменителей и ферментов для переваривания углеводов белок распадается до простейшей глюкозы В условиях, когда организму не хватает энергии, он не денатурирует белок, а при помощи специальных веществ расщепляет его сразу до уровня чистой энерги.
    Перераспределение аминокислотных тканей Циркулируя в общем кровотоке, белковые ткани под воздействием инсулина транспортируются по всем клеткам, отстраивая необходимые аминокислотные связи. Белки, путешествуя по организму, восстанавливают недостающие части, как в мышечных структурах, так и в структурах связанных с гормоностимуляцией, мозговой активностью или последующей ферментацией.
    Составление новых белковых тканей В мышечных тканях аминокислотные структуры, связываясь с микроразрывами, составляют новые ткани, вызывая гипертрофию мышечных волокон. Аминокислоты в нужном составе превращаются в мышечную-белковую ткань.
    Вторичный белковый обмен При наличии переизбытка белковых тканей в организме, они под вторичным воздействием инсулина снова попадают в кровоток для превращения их в другие структуры. При сильном мышечном напряжении, долгом голоде или во время болезни организм использует мышечные белки для компенсации аминокислотного недостатка в других тканях.
    Транспортировка липидных тканей Свободно циркулирующие белки, соединенные в фермент липазу, помогают транспортировать и переваривать вместе с желчью полинасыщенные жирные кислоты. Белок участвует в транспортировке жиров и синтезе холестерина из них. В зависимости от аминокислотного состава белка синтезируются как полезный, так и вредный холестерин.
    Выведение окисленных элементов (конечных продуктов) Отработанные аминокислоты в процессе катаболизма выводятся с продуктами жизнедеятельности организма. Мышечные ткани, поврежденные в результате нагрузок, транспортируются из организма.

    Нарушение метаболизма белков

    Нарушения белкового обмена опасны для организма не менее, чем патологии метаболизма жиров и углеводов. Белки участвуют не только в формировании мышц, но практически во всех физиологических процессах.

    Что может пойти не так? Как мы все знаем, важнейший энергетический элемент в организме — это молекулы АТФ, которые, путешествуя по крови, раздают клеткам необходимые . При нарушении обмена белков «ломается» синтез АТФ и нарушаются процессы, которые косвенно или напрямую влияют на синтезирование из аминокислот новых белковых структур.

    В числе наиболее вероятных последствий метаболических нарушений:

    • острый панкреатит;
    • некроз тканей желудка;
    • раковые новообразования;
    • общее отекание организма;
    • нарушение водно-солевого баланса;
    • потеря веса;
    • замедление умственного развития и роста у детей;
    • невозможность переваривания жирных кислот;
    • невозможность транспортировки продуктов жизнедеятельности по кишечнику без раздражения сосудистых стенок;
    • резкие
    • разрушение костной и мышечной ткани;
    • разрушение нейрон-мышечной связи;
    • ожирение;
    • Под воздействием изменений в гормональном балансе катаболические реакции превалируют над анаболическими.
    • Без поступления белка из пищи возникает недостаток основных синтезируемых аминокислот.
    • В отсутствии достаточного поступления углеводов остаточные белки катаболизируются в метаболиты сахара.
    • Полное отсутствие жировой прослойки.
    • Есть патологии почек и печени.
    • Итог

      Метаболизм белков в организме человека – сложнейший процесс, требующий изучения и внимания. Однако для поддержания уверенного анаболического фона при правильном перераспределении белковых структур в последующие аминокислоты достаточно придерживаться простых рекомендаций:

  1. Потребление белка на килограмм тела отличается для тренированного и нетренированного человека (спортсмена и не-спортсмена).
  2. Для полноценного метаболизма нужны не только углеводы и белки, но и жиры.
  3. Голодание всегда приводит к разрушению белковых тканей для восполнения энергетических запасов.
  4. Белки – это в основном потребители, а не носители энергии.
  5. Оптимизационные процессы в организме направлены на уменьшение энергопотребления с целью сохранения ресурсов на длительное время.
  6. Белки — это не только мышечные ткани, но и ферменты, мозговая активность и многие другие процессы в организме.

И главный совет для спортсменов: не увлекайтесь соевым протеином, так как из всех белковых коктейлей он обладает самым слабым аминокислотным составом. Более того, продукт плохой очистки может привести к катастрофическим последствиям — изменениям гормонального фона и . Длительное потребление сои чревато дефицитом невосполнимых в организме аминокислот, что станет первопричиной нарушения белкового синтеза.

В организме взрослого человека метаболизм азота в целом сбалансирован , то есть количества поступающего и выделяемого белкового азота примерно равны. Если выделяется только часть вновь поступающего азота, баланс положителен . Это наблюдается, например, при росте организма. Отрицательный баланс встречается редко, главным образом как следствие заболеваний.

Полученные с пищей белки подвергаются полному гидролизу в желудочно-кишечном тракте до аминокислот, которые всасываются и кровотоком распределяются в организме (см. ). 8 из 20 белковых аминокислот не могут синтезироваться в организме человека (см. ). Эти незаменимые аминокислоты должны поступать с пищей (см. ).

Через кишечник и в небольшом объёме также через почки организм постоянно теряет белок. В связи с этими неизбежными потерями ежедневно необходимо получать с пищей не менее 30 г белка. Эта минимальная норма едва ли соблюдается в некоторых странах, в то время как в индустриальных странах содержание белка в пище чаще всего значительно превышает норму. Аминокислоты не запасаются в организме, при избыточном поступлении аминокислот в печени окисляется или используется до 100 г аминокислот в сутки. Содержащийся в них азот превращается в мочевину (см. ) и в этой форме выделяется с мочой, а углеродный скелет используется в синтезе углеводов, липидов (см. ) или окисляется с образованием АТФ.

Предполагается, что в организме взрослого человека ежедневно разрушается до аминокислот 300-400 г белка (протеолиз ). В то же время примерно то же самое количество аминокислот включается во вновь образованные молекулы белков (белковый биосинтез ). Высокий оборот белка в организме необходим потому, что многие белки относительно недолговечны : они начинают обновляться спустя несколько часов после синтеза, а биохимический полупериод составляет 2-8 дней. Ещё более короткоживущими оказываются ключевые ферменты промежуточного обмена. Они обновляются спустя несколько часов после синтеза. Это постоянное разрушение и ресинтез позволяют клеткам быстро приводить в соответствие с метаболическими потребностями уровень и активность наиболее важных ферментов. В противоположность этому особенно долговечны структурные белки, гистоны, гемоглобин или компоненты цитоскелета.

Почти все клетки способны осуществлять биосинтез белков (на схеме наверху слева). Построение пептидной цепи путём трансляции на рибосоме рассмотрено на в статьях , . Однако активные формы большинства белков возникают только после ряда дальнейших шагов. Прежде всего при помощи вспомогательных белков шаперонов должна сложиться биологически активная конформация пептидной цепи (свёртывание , см. , ). При пострансляционном созревании у многих белков удаляются части пептидной цепи или присоединяются дополнительные группы, например олигосахариды или липиды. Эти процессы происходят в эндоплазматическом ретикулуме и в аппарате Гольджи (см.

Белки – обязательный компонент сбалансированного пищевого рациона.

Главными источниками белков для организма являются пищевые продукты растительного и животного происхождения. Переваривание белков в организме происходит с участием протеолитических ферментов желудочно-кишечного тракта. Протеолиз – гидролиз белков. Протеолитические ферменты – ферменты, осуществляющие гидролиз белков. Данные ферменты подразделяются на две группы – экзопепетидазы , катализирующие разрыв концевой пептидной связи с освобождением одной какой-либо концевой аминокислоты, и эндопептидазы , катализирующие гидролиз пептидных связей внутри полипептидной цепи.

В ротовой полости расщепления белков не происходит из-за отсутствия протеолитических ферментов. В желудке имеются все условия для переваривания белков. Протеолитические ферменты желудка – пепсин, гастриксин – проявляют максимальную каталитическую активность в сильно кислой среде. Кислая среда создается желудочным соком (рН = 1,0–1,5), который вырабатывается обкладочными клетками слизистой оболочки желудка и в качестве основного компонента содержит соляную кислоту. Под действием соляной кислоты желудочного сока происходит частичная денатурация белка, набухание белков, что приводит к распаду его третичной структуры. Кроме того, соляная кислота переводит неактивный профермент пепсиноген (вырабатывается в главных клетках слизистой оболочки желудка) в активный пепсин. Пепсин

катализирует гидролиз пептидных связей, образованных остатками ароматических и дикарбоновых аминокислот (оптимум рН = 1,5–2,5). Слабее проявляется протеолитическое действие пепсина на белки соединительной ткани (коллаген, эластин). Не расщепляются пепсином протамины, гистоны, мукопротеины и кератины (белки шерсти и волос).

По мере переваривания белковой пищи с образованием продуктов гидролиза щелочного характера рН желудочного сока изменяется до 4,0. С уменьшением кислотности желудочного сока проявляется деятельность другого протеолитического фермента – гастриксина

(оптимум рН= 3,5–4,5).

В желудочном соке детей обнаружен химозин (реннин), расщепляющий казеиноген молока.

Дальнейшее переваривание полипептидов (образовавшихся в желудке) и нерасщепившихся белков пищи осуществляется в тонком кишечнике под действием ферментов панкреатического и кишечного соков. Протеолитические ферменты кишечника – трипсин, химотрипсин – поступают с панкреатическим соком. Оба фермента наиболее активны в слабощелочной среде (7,8–8,2), что соответствует рН тонкого кишечника. Профермент трипсина – трипсиноген, активатор – энтерокиназа (вырабатывается стенками кишечника) или ранее образованный трипсин. Трипсин

гидролизует пептидные связи, образованные арг и лиз. Профермент химотрипсина – химотрипсиноген, активатор – трипсин. Химотрипсин расщепляет пептидные связи между ароматическими амк, а также связи, которые не были гидролизованы трипсином.

Благодаря гидролитическому действию на белки эндопептидаз (пепсин, трипсин, химотрипсин) образуются пептиды различной длины и некоторое количество свободных аминокислот. Дальнейший гидролиз пептидов до свободных аминокислот осуществляется под влиянием группы ферментов – экзопептидаз . Одни из них – карбоксипептидазы – синтезируются в поджелудочной железе в виде прокарбоксипептидазы, активируются трипсином в кишечнике, отщепляют аминокислоты с С-конца пептида; другие – аминопептидазы – синтезируются в клетках слизистой оболочки кишечника, активируются трипсином, отщепляют аминокислоты с N – конца.

Для обмена белков в организме человека характерна одна важная особенность - ни белки, ни аминокислоты не могут запасаться впрок, как, например, липиды в жировой ткани или углеводы в виде гликогена.

Заменимые аминокислоты могут синтезироваться в организме человека. Для этого есть несколько путей: аминирование непредельной кислоты, восстановительное аминирование и переаминирование.

Алитированием непредельной кислоты образуется Асп из фумаровой кислоты под действием аспартат:аммиак-лиазы (см. рис. 6.40). Реакция обратима и поэтому Асп, превращаясь в фумаровую кислоту, может полностью окисляться в цикле Кребса.

Восстановительное аминирование - процесс, обратный окислительному дезаминированию (см. рис. 3.14 и 12.1). Но таким путем образуются только Ала и Глу, так как активность их дегидрогеназ существенна.

Таким образом, Ала, Асп и Глу считают первичными , а все остальные заменимые аминокислоты образуются в реакциях переаминироваиия (см. рис. 3.15).

Пищевые аминокислоты (образующиеся при переваривании белков) с кровыо разносятся к разным органам и тканям, где используются для синтеза белков. Подсчитано, что в организме взрослого человека ежесуточно синтезируется 1,3 г белка на 1 кг массы (в среднем 90-100 г). При этом с помощью изотопных методов установлено, что пищевые аминокислоты составляют лишь 1/4 часть. Это свидетельствует о том, что в тканях организма белки подвергаются постоянному обновлению. Разные белки обновляются с разной скоростью. Например, сроки функционирования инсулина составляют 20-30 мин, белков слизистой кишечника - 2-4 сут, гемоглобина - 100-120 сут, коллагена - 6-8 мес.

Отслужившие свой срок молекулы белков подвергаются действию тканевых пептидгидролаз и разрушаются до свободных аминокислот по схеме

Белок -? Высокомолекулярные -? Низкомолекулярные -? Аминокислоты, полипептиды полипептиды

Аналогично протекает распад белков и вне организма, в различных биологических тканях, жидкостях и пищевых системах. Например, при созревании сыров в готовом продукте всегда присутствуют все компоненты, представленные на данной схеме. Соотношение продуктов распада: пептидов, аминокислот, аминов существенно влияет на вкус и аромат. Средне- и низкомолекулярные пептиды, обладающие горьким вкусом, придают некоторым сырам характерный горьковатый привкус.

Процессы обмена белков в организме человека регулируются при участии ряда гормонов (табл. 12.4).

Таблица 12.4

Регуляция обмена белков и аминокислот

Орган

Синтезируемые гормоны и оказываемый эффект

Гипофиз

Соматотропин усиливает синтетические процессы белка

Щитовидная железа

Тироксин увеличивает скорость биосинтеза белков

Поджелудочная железа

Инсулин обеспечивает преобладание синтеза белков над их распадом; стимулирует связывание и-РНК с рибосомами

Мозговое вещество надпочечников

Адреналин увеличивает скорость расщепления в тканях белков и выделения азотистых продуктов обмена с мочой

Кора надпочечников

Кортизон тормозит синтез белков, увеличивает их распад и выделение азотистых продуктов обмена с мочой

Семенники

Тестостерон стимулирует биосинтез белка в мышечной ткани, вызывая накопление в организме азота

В результате обмена белков часть аминокислот подвергается распаду. Обязательной стадией при этом является дезаминирование или переамиии- роваиие (см. параграф 3.2).Наиболее распространенный вариант - окислительное дезаминирование. На рис. 3.14 показано суммарное уравнение. В действительности реакция протекает в две стадии: дегидрирование и гидролиз (см. рис. 12.1). При окислении по действием специфической НАД-деги- дрогепазы образуется иминокислота. Во время гидролиза двойная связь в иминогруппе расщепляется и выделяется NH 3 .

Это превращение имеет большое значение для обмена белков, так как обе его стадии обратимы и таким образом из кетокислоты может образоваться аминокислота.

По направлению использования безазотистого остатка аминокислоты делят на две группы: кетогенные и гликогенные (табл. 12.5).

Одновременно кетогенные и гликогенные - Иле, Лиз, Фен, Тир, Три.

В настоящее время известны пути распада всех протеиногенных аминокислот.

Примеры кетогенных и гликогенных аминокислот

Обмен отдельных аминокислот

Глицин - простейшая аминокислота. Синтезируется, главным образом, из Сер, оксиметильная группа которого удаляется ферментом, содержащим витамин By. Подобно ГАМК, Гли является тормозным нейромедиатором . Гли включается в синтез пуриновых азотистых оснований (см. рис. 13.9) и пиррольных циклов. Участвует в обезвреживании токсичных соединений ароматического ряда, которые образуются из растительных продуктов, если те преобладают в рационе. Гли образует с бензойной, фснилуксусной кислотами и фенолами растворимые в воде соединения, которые выводятся через почки. Например, комплекс Гли с бензойной кислотой называется гиинуровая кислота (рис. 12.2).


Рис. 12.2.

С холевой кислотой Гли образует гликохолевую кислоту (рис. 12.3), обладающую свойствами ПАВ и участвующую в эмульгировании жиров при переваривании.


Дезаминирование Гли осуществляется по окислительному типу НАД-зависимой дегидрогеназой с образованием глиоксиловой кислоты (рис. 12.4).

Рис. 12.4.

Серин - заменимая оксиаминокислота. Скелет ее образуется из 3-ФГК, источником которой является глюкоза, a NH 2 -rpynna вводится путем пере- аминирования. Сер необходим для синтеза фосфолипидов (см. рис. 11.42 и 11.43), является предшественником аминоэтанола (рис. 12.5), холина.


Рис. 12.5.

Оксигруппа Сер входит в состав активных центров многих ферментов, таких, как трипсин, химотрипсип, эстеразы, фосфорилазы, фосфатазы.

При распаде Сер сначала освобождается от спиртового гидроксила, а затем гидролитическим путем - от аминогруппы (рис. 12.6). В результате образуется ПВК, которая легко вовлекается в ЦТК и окисляется там до Н 2 0 и С0 2 .


Рис. 12.6.

Метионин - незаменимая серосодержащая аминокислота. Передает метальную группу на другие соединения. В результате образуются холин, креатин, адреналин, азотистые основания.

После освобождения от метальной группы сера Мет в основном переходит в серу Цис.

В действительности все превращения протекают, когда Мет находится в активной форме - в виде 8 + -аденозилметионина (см. рис. 6.31).

Хотя Мет - незаменимая аминокислота, она может регенерироваться из гомоцистеина в обратимой реакции, показанной на рис. 12.7. Катализируется превращение ферментами, в составе которых есть витамины В 9 и В 12 . По-


Рис. 12.7.

скольку единственным источником гомоцистеина служит Мет, то обеспечение организма данной аминокислотой зависит исключительно от ее содержания в продуктах питания .

Цистеин - заменимая серосодержащая аминокислота, так как может синтезироваться из двух аминокислот: Сер и Мет (см. рис. 12.7). Цис содержит высокоактивную сульфгидрильную группу, которая может легко окисляться с образованием дисульфидной связи. Такое превращение происходит между разными полипептидными цепями или в пределах одной полипептидной цепи при формировании третичной структуры белка и называется посттрансляционная модификация белка. Именно таким образом стабилизированы молекулы инсулина, химотрипсина и других белков в третичной структуре.

Активность сульфгидрильной группы проявляется в ферментативном катализе. Например, многие ферменты содержат в активном центре SH- группы, необходимые для каталитической реакции. Известно, что активность таких ферментов утрачивается при окислении SH-rpynn.

В экспериментах с животными доказано, что цистеин трансформируется в трипептид глутатион, обладающий окислительно-восстановительными свойствами. Предполагают, что глутатион поддерживает активную восстановленную форму ферментов, за счет собственного окисления. Положительный антиоксидантный эффект глутатиона доказан:

  • в улучшении процессов нейтрализации тяжелых металлов, токсинов;
  • снижении нежелательных последствий радиации и химиотерапии при лечении онкологических заболеваний;
  • в замедлении процессов старения.

В тканях цистеин может декарбоксилироваться с образованием амино- этантиола (рис. 12.8), который необходим для синтеза Ко А или окисляется до таурина (рис. 12.9).

Таким образом, цистеин - это предшественник таурина, который играет роль нейромедиатора, обладает противосудорожной активностью. Таурин способствует улучшению энергетического обмена, стимулирует восстановительные процессы, например, в тканях глаза.

В печени таурин образует таурохолевую кислоту подобную гликохоле- вой (см. рис. 12.3), чем способствуют эмульгированию жиров в кишечнике.


Рис. 12.9.

Часто комплексы желчных кислот с таурином и глицином называют конъюгаты или парные соединения.

Аспарагиновая и глутаминовая кислоты играют большую роль в обмене белков, осуществляют транс- и дезаминирование аминокислот. Могут акцептировать NH 3 не только в свободном виде, но и в составе белков. В результате образуются соответствующие амиды: аспрагин (Аси) и глутамин (Глн). Тем самым Аси и Глу участвуют в обезвреживании NH 3 .

Обмен большинства аминокислот проходит через стадию образования аспарагиновой и глутаминовой кислот в реакциях переаминирования.

Обе аминокислоты участвуют в синтезе азотистых оснований (см. рис. 13.8 и 13.9).

Декарбоксилирование аспарагиновой кислоты приводит к образованию а- или (3-алапина (рис. 12.10). Последний может включаться в синтез пан- тотеповой кислоты (см. рис. 6.47).


Рис. 12.10.

При а-декарбоксилировании глутаминовой кислоты образуется у-ами- номасляная кислота (рис. 12.11), которая тормозит процессы возбуждения в сером веществе коры головного мозга и используется как лекарственное средство при некоторых заболеваниях ЦНС.


Фенилаланин - незаменимая ароматическая аминокислота. Окисляется до тирозина, который далее превращается в хинон (рис. 12.12). Хиноны входят в состав меланонротеинов - сложных белков, придающих окраску коже, волосам, шерсти.

Рис. 12.12.

1 - реакция катализируется фенилаланингидроксилазой; 2 - реакция катализируется

тирозиназой

В обмене Фен может наблюдаться наследственный сбой - синтез ряда дефектных ферментов. Например, при дефекте синтеза фенилаланингид- роксилазы наблюдается заболевание феншкетонурия. В этом случае образуется не Тир, а фениллактат, фенилпируват и фенилацетат, которые накапливаются в крови и выводятся с мочой. Эти продукты токсичны для мозга и вызывают у детей тяжелое отставание в умственном развитии (фе- нилпировиноградная олигофрения), предупредить развитие которого можно, соблюдая диету, не содержащую Фен. В частности, гликомакропептид, отщепляющийся при ферментативном гидролизе казеина и переходящий в сыворотку, не содержит Фен, а значит, может использоваться в питании таких детей.

Другое нарушение возникает при дефекте тирозиназы и называется альбинизм (от лат. albus - белый). Из-за сбоя в синтезе пигмента меланина кожа и волосы у человека слабо пигментированы, а зрачки глаз красного цвета, так как просвечивают сосуды глазного дна из-за отсутствия пигментов в радужной оболочке.

Тирозин является заменимой аминокислотой, так как синтезируется из Фен (см. рис. 12.12). Однако окисление Фен в Тир, катализируемое фенил- аланингидроксилазой - необратимый процесс, поэтому при недостатке Фен в продуктах Тир не может заменить его.

Тир - предшественник ряда важных соединений. Во-первых, из Тир синтезируются гормоны щитовидной железы: тетраиодтиронин (Т,) и три- иодтиронин (Т 3).

Во-вторых, Тир при участии тирозиназы окисляется до диоксифенила- ланина (ДОФА), а затем до ДОФА-хинона, который необходим для синтеза окрашенных белков - меланонротеинов.

Наконец, диоксифенилаланин может подвергаться декарбоксилирова- нию с образованием дофамина (диоксифенилэтиламина), который является предшественником катехоламинов (нейромедиаторов) - норадреналина и адреналина (см. рис. 8.3).


Рис. 12.13.

Триптофан - незаменимая для человека и животных аминокислота. Из нее синтезируются такие биологически активные соединения, как серотонин (рис. 12.14) и рибонуклеотид никотиновой кислоты. Серотонин - высокоактивный биогенный амин сосудосуживающего действия. Он регулирует артериальное давление, температуру тела, дыхание, почечную фильтрацию и является медиатором нервных процессов в ЦНС.


Рис. 12.14.

В норме не более 1% Три превращается в серотонин. Более 95% Три окисляется по пути, который приводит к образованию НАД, уменьшая потребность организма в витамине В 5 .

Пролил - заменимая аминокислота, поэтому в животном организме существует возможность ее синтеза: либо из у-полуальдегида глутаминовой кислоты (а-амино-у-оксопентановая кислота), либо из орнитина, который образуется при гидролизе Apr (рис. 12.15).


Рис. 12.15.

При распаде Про сначала окисляется той же НЛД-дегидрогеназой до 5-пирролин-2-карбоновой кислоты, у которой гидролитическим путем разрушается цикл по месту двойной связи. В результате образуется у-полуальдегид. Его альдегидная группа окисляется до карбоксильной. Так возникает Глу, пути использования которой зависят от потребности клетки.

Процессы дезаминирования, переаминирования и синтеза аминокислот, альбуминов и большей части глобулинов сыворотки крови, протромбина и фибриногена происходят в печени. Предполагают, что альбумин и α-глобулины вырабатываются полигональными клетками печени, β- и ү-глобулины образуются в РЭС, в частности в купферовских клетках печени и плазматических клетках костного мозга.

Ведущая роль печени в белковом обмене объясняет большой интерес клиницистов к методам определения показателей этого обмена. К ним относится прежде всего определение общего количества белка плазмы и его фракций, в том числе и протромбина. Наряду с определением протеинограммы находят практическое применение и пробы, указывающие лишь косвенно на наличие изменений в белках крови, в том числе на проявление патологических белков - парапротеинов. К таковым принадлежат пробы на лабильность и коллоидальные пробы.

Общее количество белка в плазме здоровых людей составляет 7,0-8,5% (К. И. Степашкина, 1963). Изменение общего количества белка наблюдается лишь при тяжелых нарушениях белкового обмена. В противоположность этому изменение соотношения отдельных фракций является весьма тонким показателем состояния обмена белков.

Наиболее широкое применение в практике имеет определение белковых фракций методом электрофореза на бумаге. Недостатком последнего являются колебания в получаемых результатах в зависимости от применяемого варианта метода. Поэтому литературные данные о нормальной протеинограмме не идентичны.

В таблице 7 приведены варианты нормы, описываемые различными авторами (по В. Е. Предтеченскому, 1960).

При поражении печени уменьшается синтез альбумина и α1-глобулинов в полигональных клетках печени, а синтез β- и ү-глобулинов в купферовских клетках и перипортальных мезенхимальных клетках увеличивается (как проявление раздражения клеток ретикулоэндотелия), результатом чего являются количественные изменения белковых фракций - диспротеинемия.

Для диффузных поражений печени, как острых, так и хронических в период их обострения, характерны следующие изменения протеинограммы: уменьшение количества альбуминов и повышение глобулинов. Что касается последних, то преимущественно увеличивается ү-глобулиновая фракция, по-видимому, за счет накопления антител, сходных по электрофоретической подвижности с ү-глобулинами. Меньше повышается содержание α2- и β-глобулинов. Степень изменения протеинограммы находится в прямой зависимости от тяжести заболевания. Исключение составляет агаммаглобулинемия при печеночной коме. Общее количество белка обычно несколько повышено за счет гиперглобулинемии.

Оценивая протеинограмму у больных с поражением печени, не следует забывать, что при большом количестве самых разнообразных заболеваний наблюдается значительное изменение белковых фракций, как, например, при коллагенозах, поражениях почек, миеломатозе и др.

При заболеваниях печени происходят изменения в свертывающей системе крови, и определение различных факторов свертывания крови является тестом для оценки функционального состояния печени. Наиболее характерны изменения протромбина и проконвертина.

Протромбин (II фактор свертывания крови) является глобулином, при электрофоретическом исследовании плазмы протромбиновый пик расположен между альбуминами и ү-глобулинами. Образуется протромбин в печеночных клетках при участии витамина К. В процессе свертывания крови протромбин превращается в тромбин. Концентрация протромбина в плазме крови составляет около 0,03%. Практически определяют не абсолютное количество протромбина, а «протромбиновое время» и протромбиновый индекс. Наиболее распространенным в Советском Союзе методом определения протромбинового индекса является метод В. Н. Туголукова (1952). В норме протромбиновый индекс составляет 80-100%.

Способность гепатоцитов к синтезу протромбина при патологии печени может быть нарушена. Кроме того, поражение печени сопровождается нарушением депонирования в ней ряда витаминов, в том числе витамина К, что также является причиной гипопротромбинемии. Поэтому в случае обнаружения понижения протромбинового индекса следует провести повторное исследование после 3-дневной нагрузки витамином К - по 0,015 викасола 3 раза в день. Если количество протромбина остается низким, то это свидетельствует о поражении паренхимы печени.

Другим фактором свертывающей системы крови, закономерно реагирующим на поражение печени, является проконвертин (фактор VII, стабильный фактор). Проконвертин катализирует действие тромбопластина, ускоряя образование тромбина. Данный фактор образуется в печени, содержание его в плазме составляет 0,015-0,03%. Количество проконвертина, как и протромбина, выражают в виде индекса. Время проконвертина составляет в норме 30-35 секунд, индекс - 80-120%.

При поражении паренхимы печени понижаются как протромбиновый индекс, так и показатель проконвертина. Имеется параллелизм между этими показателями и тяжестью поражения печени (К. Г. Капетанаки и М. А. Котовщикова, 1959; А. Н. Филатов и М. А. Котовщикова, 1963).

Предложено большое количество различных методов, косвенно определяющих наличие диспротеинемии и парапротеинемии. Все они основаны на осаждении патологического белка различными реактивами.

Проба Таката-Ара (сулемовая проба) основана на выпадении хлопьевидного осадка крупнодисперсных белков под действием реактива Таката, содержащего сулему. Реакция оценивается по плотности осадка или по разведению сыворотки, при котором наступило помутнение. Проба оценивается как положительная, если в ряду пробирок с реактивом Таката и убывающим количеством сыворотки (1,0; 0,5; 0,25; 0,12 мл и т. д.) хлопьевидный осадок выпадает в первых трех и более пробирках; если только в первых двух - слабо положительная. Проба выпадает положительной при увеличении содержания ү-глобулинов в крови, в частности при болезни Боткина, при циррозе печени, но также и при ряде других заболеваний (пневмония, сифилис и др.).

Одной из модификаций пробы Таката-Ара является проба Гросса (сулемово-осадочная реакция), при которой результаты выражаются в миллилитрах сулемового реактива, необходимого для получения отчетливого помутнения. Нормой является 2 мл и более. При заболеваниях печени показатели пробы Гросса снижаются до 1,8-1,6 мл, при тяжелом поражении - до 1,4 мл и ниже.

Проба Вельтмана основана на коагуляции белков плазмы при нагревании в присутствии раствора хлористого кальция различной концентрации (от 0,1 до 0,01%). В норме коагуляция наступает при концентрации раствора выше чем 0,04%, т. е. в первых 6-7 пробирках. Для поражения печени характерно появление осадка при меньшей концентрации - удлинение коагуляционной «ленты».

Проба с кефалином основана на возникновении флокуляции кефалин-холестериновой эмульсии в присутствии сыворотки крови больного. Проба имеет то преимущество перед указанными выше, что выпадает резко положительной при наличии некрозов в паренхиме печени и поэтому может быть полезна в определении активности процесса при болезни Боткина и циррозе печени и в дифференциальном диагнозе между механической желтухой (на ранних этапах) и поражением паренхимы печени.

Тест тимолового помутнения основан на определении помутнения, возникающего при соединении испытуемой сыворотки с тимоловым реактивом. Степень помутнения определяется через 30 минут и оценивается в спектрофотометре или в колориметре. Используя стандартную кривую мутности, получают результат в условных единицах. Норма колеблется от 0,8 до 5,0 ед. При поражении печени показатель пробы увеличивается, достигая 30-35 ед. при болезни Боткина (Popper, Schaffner, 1961).

Проба тимолового помутнения может быть продолжена в виде теста тимоловой флоккуляции: оценивается флоккуляция, наступающая через 24 часа после соединения сыворотки с тимоловым реактивом.

Остаточный азот крови составляет в норме 20-40 мг%. Выраженная азотемия (до 100 мг% и более) встречается при тяжелых поражениях печени (острая дистрофия при гепатите, терминальная стадия цирроза, печеночная недостаточность после операции на печени и желчевыводящих путях) и свидетельствует о развитии печеночной недостаточности.

Аммиак сыворотки крови составляет в норме 40-100 ү%. Гипераммониемия наблюдается при печеночной недостаточности, а также при наличии выраженных порто-кавальных анастомозов (развившихся естественно или созданных при операции), по которым кровь от кишечника идет, минуя печень. Наиболее выраженное увеличение количества аммиака в периферической крови наблюдается у больных с печеночной недостаточностью после нагрузки белком (употребление в пищу большого количества мяса, поступление в кишечник крови при пищеводном или желудочном кровотечении). Для выявления портально-печеночной недостаточности может быть применена проба с нагрузкой аммиачными солями (А. И. Хазанов, 1968).

Липопротеиды и гликопротеиды *. Белки сыворотки крови образуют устойчивые соединения с липидами и углеводами: липо- и гликопротеиды. Естественно, что при изменении соотношения различных фракций белков плазмы изменяется и содержание связанных с ними комплексов.

При электрофорезе липопротеиды разделяются на фракции, соответствующие α1-,β и ү-фракциям глобулина. К ү-фракции («липидный остаток») относятся мало подвижные в электрическом поле соединения белка с нейтральным жиром и холестериновыми эфирами. Эта фракция не представляет практического интереса, поскольку последняя не изменяется в условиях патологии. У здоровых лиц имеется следующее процентное соотношение α- и β-фракций, липопротеидов (И. Е. Тареева, 1962): α-липопротеиды - 29,0 ± 4,9; β-липопротеиды - 71,0 ± 4,9; отношение β/α-2,45 ± 0,61.

Установлена связь между изменением соотношения α- и β-фракцией липопротеидов и степенью тяжести повреждения паренхимы печени. Нет полного параллелизма между изменением липопротеинограммы и другими функциональными показателями. Однако следует отметить, что для болезни Боткина и активной фазы цирроза печени характерно понижение количества α-липопротеидов до полного их исчезновения на липидограмме и повышение β-липопротеидов с соответственным увеличением соотношения β/α в несколько раз. При хронических поражениях печени указанные изменения менее выражены.

Гликопротеиды - соединения различных углеводов с белками, в основном с глобулинами. Электрофоретический метод дает разделение фракций гликопротеидов с соответствующими белковыми фракциями. Синтез гликопротеидов осуществляется в печени, поэтому понятна попытка применения определения гликопротеидов с целью функциональной диагностики. Однако данные, получаемые различными авторами при обследовании больных с патологией печени, остаются весьма противоречивыми. Более характерным является увеличение фракции α-гликопротеидов (Н. А. Заславская, 1961; И. Д. Мансурова, В. И. Дронова и М. С. Панасенко, 1962).

* Методику определения см: А. Ф. Блюгер. Структура и функция печени при эпидемическом гепатите. Рига, 1964.