Углеводный обмен. Регуляции углеводного обмена

Углеводы поступают в организм с растительной и в меньшем количестве с животной пищей. Кроме того, они синтезируются в нем из продуктов расщепления аминокислот и жиров.

Углеводы - важная составная часть живого организма, хотя ко­личество их в организме значительно меньше, чем белков и жи­ров,- всего около 2% сухого вещества тела.

Углеводы служат в организме основным источником энергии . При окислении 1 г углеводов освобождается 4,1 ккал энергии. Для окисления углеводов требуется значительно меньше кислорода, чем для окисления жиров. Это особенно повышает роль углеводов при мышечной деятельности. Значение их как источника энергии под­тверждается тем, что при уменьшении концентрации глюкозы в крови резко снижается физическая работоспособность. Большое значение углеводы имеют для нормальной деятельности нервной системы.

Пища содержит главным образом сложные углеводы, которые расщепляются в кишечнике и всасываются в кровь , преимуществен­но в виде глюкозы. В небольших количествах глюкоза содержится во всех тканях . Концентрация ее в крови колеблется от 0,08 до 0,12%. Поступая в печень и мышцы, глюкоза используется там для окислительных процессов, а также превращается в гликоген и от­кладывается в виде запасов.

При голодании запасы гликогена в печени и концентрация глю­козы в крови уменьшаются. То же самое происходит при длитель­ной и напряженной физической работе без дополнительного прие­ма углеводов. Уменьшение концентрации глюкозы в крови ниже 0,07% называется гипогликемией появляется мышечная слабость, чувство го­лода, падает температура тела. Нарушение деятельности нервной системы проявляется при этом в возникновении судорог, помраче­нии и потере сознания , а увеличение выше 0,12% -ги­пергликемией может возникать после приема пищи, богатой легкоусваиваемыми углеводами, при эмоциональном возбуждении, а также при заболеваниях поджелудочной железы или при ее удале­нии у животных с экспериментальной целью.

Избыток глюкозы выводится из крови почками (гликозурия). У здорового человека это можно наблюдать после приема натощак 150-200 г сахара.

В печени содержится около 10% гликогена, в скелетных мыш­цах-не более 2%. Общие запасы его в организме составляют в среднем 350 г. При уменьшении концентрации глюкозы в крови проис­ходит интенсивное расщепление гликогена печени и выход глюко­зы в кровь. Благодаря этому поддерживается постоянный уровень глюкозы в крови и удовлетворяется потребность в ней других ор­ганов.

В организме происходит постоянный обмен глюкозой между пе­ченью, кровью, мышцами, мозгом и другими органами. Главный потребитель глюкозы - скелетные мышцы. Расщепление в них угле­водов осуществляется по типу анаэробных и аэробных реакций. Одним из продуктов расщепления углеводов является молочная кислота.

Запасы углеводов особенно интенсивно используются при физи­ческой работе. Однако полностью они никогда не исчерпываются. При уменьшении запасов гликогена в печени его дальнейшее рас­щепление прекращается, что ведет к снижению концентрации глю­козы в крови до 0,05-0,06%, а в некоторых случаях до 0,04- 0,038%. В последнем случае мышечная деятельность продолжаться не может. Таким образом, уменьшение содержания глюкозы в кро­ви- один из факторов, снижающих работоспособность организма при длительной и напряженной мышечной деятельности. При такой работе необходимо пополнять углеводные запасы в организме, что достигается увеличением углеводов в пищевом рационе, дополни­тельным введением их перед началом работы и непосредственно при ее выполнении. Насыщение организма углеводами способствует сохранению постоянной концентрации глюкозы в крови, что необ­ходимо для поддержания высокой работоспособности человека.

Влияние приема углеводов на работоспособность установлено лабораторными экспериментами и наблюдениями при спортивной деятельности. Эффект от принимаемых до работы углеводов при прочих равных условиях зависит от их количества и времени приема.

Углеводный обмен в организме регулируется нервной системой . Это было установлено Клодом Бернаром, который после укола иг­лой в дно IV желудочка мозга («сахарный укол») наблюдал уси­ленный выход углеводов из печени с последующими гипергликеми­ей и гликозурией. Эти наблюдения свидетельствуют о наличии в продолговатом мозгу центров, регулирующих углеводный обмен. Позднее было установлено, что высшие центры, регулирующие об­мен углеводов, находятся в подбугровой области промежуточного мозга. При раздражении этих центров наблюдаются такие же яв­ления, как и при уколе в дно IV желудочка. Большое значение в регуляции углеводного обмена имеют условнорефлекторные разд­ражители . Одним из доказательств этого служит увеличение кон­центрации глюкозы в крови при возникновении эмоций (например, у спортсменов перед ответственными стартами).

Влияние центральной нервной системы на углеводный обмен осуществляется главным образом посредством симпатической иннервации . Раздражение симпатических нервов усиливает образова­ние адреналина в надпочечниках. Он вызывает расщепление глико­гена в печени и скелетных мышцах и повышение в связи с этим концентрации глюкозы в крови. Гормон поджелудочной железы глюкагон также стимулирует эти процессы. Гормон поджелудочной железы инсулин является антагонистом адреналина и глюкогена. Он непосредственно влияет на углеводный обмен печеночных кле­ток, активирует синтез гликогена и тем самым способствует его депонированию. В регуляции углеводного обмена участвуют гор­моны надпочечников, щитовидной железы и гипофиза.

Лекция № 24. Промежуточный обмен веществ.

1. Азотистый обмен и его регуляция.

2.

3.

1.Промежуточный обмен веществ это совокупность химических реакций последовательно протекающих на уровне клеточных структур с участием специфических катализаторов. В результате этого организм животного получает необходимые пластические вещества и энергию для поддержания жизнедеятельности, роста, развития и получения продукции (молоко, мясо, яйца и т. д.)

2.Различают две стороны промежуточного обмена: анаболизм и катаболизм. Анаболизм (от греч. anabole-подъем) - это совокупность процессов синтеза сравнительно крупных клеточных компонентов, а также биологически активных соединений из простых предшественников. Эти про­цессы ведут к усложнению структуры клеток и связаны с затратами свободной энергии.

3.Катаболизм (от греч. Katabole – сбрасывание) - это совокупность окислительных, ферментативных реакций в результате которых происходит деградация сложных крупных молекул до простых компонентов. Это приводит к упрощению структуры, образованию и выделение свободной энергии.

4.В процессе промежуточного обмена происходит, с одной стороны, даль­нейшее превращение всосавшихся в пищеварительном тракте блоков - аминокислот, глюкозы, глицерина и жирных кислот, а с другой стороны - синтез свойственных (видоспецифических) организму белков, углеводов, жиров и их комплексов - нуклеопротеидов, фосфолипидов и т. д.

5.Для изучения промежуточного обмена используют как общие физиологи­ческие методы (метод изолированных органов, ангиостомию, биопсию), так и специальные методы. Среди последних - метод меченых атомов, основанный на использовании со­единений, в молекулы которых включены атомы тяжелых или радиоактивных изотопов биоэлементов (N15 , С14, Р32, S35 и др.). Введение в организм меченных изотопов, позволяет просле­дить за судьбой элемента или соединения в организме и его участием в мета­болических процессах.

1. Азотистый обмен - это совокупность пластиче­ских и энергетических процессов превращений белков, аминокислот и других азотсодержащих веществ (амидов, пептидов, промежуточных и конечных продуктов распада аминокислот) в организме животных.

7.Белок это уникальная биологическая суперструктура клеток и тканей, занимающего наибольший удельный вес в массе тела животного и человека (более 50% сухого вещества).

8.Белки делятся на простые и сложные. Простые состоят только из остатков α – аминокислот. Сложные, кроме белковой части имеют небелковую. К простым белкам относятся: альбумин, глобулин, проламины, гистоны, протамины и другие. К сложным белкам относятся: фосфопротеиды, гликопротеиды, липопротеиды, хромопротеиды, нуклеопротеиды.

ФУНКЦИИ БЕЛКОВ

9.Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур. Сокращения мышц связаны с особыми свой­ствами белков миозина и актина, входящих в состав мышечной ткани.

10.Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки–ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров. Принимают участие в пищеварении.

11.Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

12.Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином, а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

13.Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Энергетическая ценность 1 г белка составляет 4,1 ккал (17,2 кДж).

14.Регуляторную функцию выполняют белки-гормоны. Инсулин (простой белок) снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов. Вазопрессин подавляет мочеобразование и повышает кровяное давление.

15. Новые исследования дают много фактов, позволяющих выделять группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за важнейшие жизненные процессы: сна, памяти, боли, чувства страха, тревоги).

16.Синтез и распад белка в организ­ме происходят непрерывно, на протяжении всей жизни. Методом меченных атомов установлено, что около 50% всех белков в организме млекопитаюших обновляются за 6 – 7 месяцев. Наиболее быстро этот процесс происходит у беков плазмы крови, белков печени, слизистой оболочки кишечника и в сером веществе головного мозга. Медленно обновляются белки, входящие в состав клеток сердца, половых желез. Еще медленнее обновляются белки кожи, мышц, особенно опорных тканей - сухожилий, хрящей и костей.

17.В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Следовательно, белки в организме животного не могут образовываться из других питательных веществ – углеводов и жиров т. к. в них отсутствует азот. Поэтому белки считаются незаменимыми питательными веществами и должны содержаться в необходимом количестве в пище и кормах.

18.Белки корма никогда не вступают в состав тканей тела без предварительного расщепления. В пищеварительном тракте они перевариваются до аминокислот и простых пептидов, которые лишены видовой и тканевой специфичности и способны проходить через клеточную мембрану эпителиоцитов.

19.Введение животному чужеродного белка парентерально (т. е. минуя желудочно-кишечный канал) вызывает сильную реакцию организма в виде озноба, повышения температуры, угнетения функций. Белок, являясь антигеном, вызывает активизацию иммунной системы, выработку антител и повышение чувствительности к антигену (сенсибилизацию). Повторное введение того же белка может вызвать анафилактический шок (от греч. ana - против и phylaxis -защита), проявляющийся комплексом патологических реакций (падение кровяного давления, бронхоспазм, застой крови в печени или легких), вплоть до паралича сосудодвигательного или дыхательного центра.

20.Биологическая ценность различных белков неодинакова и зависит от их аминокислотного состава. Биологи­чески полноценным является белок, состав которого обеспечивает потреб­ность организма во всех аминокислотах при данном физиологическом состоя­нии. К таким белкам относятся белки яиц, молока, рыбы, мяса. Растительные белки в большинстве своем неполноценны, что объясняется сравнительно низким содержанием в них некоторых незаменимых амино­кислот.

21. Аминокислоты по биологическому значению подразделяются на три группы:

22.1. Заменимые - глицин, аланин, серин, цистеин, тирозин, аспарагин, глутамин, аспарагиновая и глутаминовые кислоты. Синтезируются в организме человека и животного в достаточном количестве.

23.2. Полузаменимые - аргинин, гистидин. Образуются в организме, но в недостаточном количестве, поэтому их недостаток должен восполняться с белковой пищей и кормом.

24.3. Незаменимые аминокислоты - валин, лейцин, изолейцин, треонин, лизин, метионин, фенилаланин, триптофан. Эти восемь аминокислот не синтезируются в организме и должны поступать только с пищей и кормом.

25.Биологическая ценность животных белков, сбалансированных по амино­кислотному составу, составляет 75-90 %, белков растительного происхож­дения - 60-65 %.

26.В практических условиях лимитирующими аминокислотами являются метионин и лизин, иногда триптофан и гистидин. В питании животных полно­ценность рациона достигается либо сочетанием кормов, дополняющих друг друга по аминокислотам (например, кукуруза плюс соя), либо добавлением соответствующих синтетических аминокислот. Перспективна также селекция растений по показателям полноценности протеина.

27.Полноценные белки крайне необходимы для растущих, беременных и лактирующих животных, т. к. при этих физиологических состояниях организма происходит усиленный обмен белковых веществ.

28.Азотистый баланс. Баланс азота - это разница между количеством азо­та, принятым с кормом за сутки и выделенным из организма за то же время с экскретами и продуктами.

В наиболее простом виде:

29. Баланс N = N корма-( N фекалий+ N мочи).

31.При опре­делении баланса у лактирующих животных учитывают дополнительно выде­ление азота с молоком. Потерями азота с потом и шерстью пренебрегают.

32.По балансу азота можно с достаточной точностью судить о полноценности белкового питания животных и степени усвоения белка. Поскольку в белке содержится в среднем 16 % азота (или 1 г азота соответствует 6,25 г белка), найденное количество потребленного или экскретированного азота следует умножить на 6,25. По разнице определяют количество отложенного или выде­ленного из организма белка.

33.Азотистый баланс может быть положительным, отрицательным и уравно­вешенным. Положительный баланс свидетельствует о преобладании синтеза белка над его распадом (поступление азота с кормом превышает его выведе­ние из организма). Это бывает в период роста животных, при вынашивании плода, при восстановлении после вынужденного голодания, при использова­нии анаболических препаратов, в частности андрогенов

34.Отрицательный баланс азота (когда выведение превышает поступление) указывает на преобладание распада тканевого белка. Это состояние наблю­дается при голодании, недостаточном белковом питании, дефиците незамени­мых аминокислот в рационе или их дисбалансе, недостатке витаминов и мине­ральных веществ, необходимых для использования протеина

35.Уравновешенный азотистый баланс (азотистое равновесие) -это нор­мальное физиологическое состояние взрослого животного, закончившего рост и содержащегося на сбалансированном рационе. Он наблюдается и у лакти­рующих животных, так как выделение у них азота с молоком компенсируется большим поступлением его с кормом.

36.Минимальное количество белка в корме, при котором еще сохраняется азотистое равновесие, называется белковым минимумом . Он определяется в граммах на килограмм массы тела животного:

37. - у свиней и овец белковый минимум равен – 1,0;

38. - лошади в покое – 0,7 – 0,8, в работе – 1,2 – 1,4;

39. - коровы нелактирующие – 0,7 – 0,8, лактирующие – 1,0.

41.Резкий и длительный дефицит белка приводит к снижению массы тела и отрицательному азотистому балансу вследствие расхода собственных бел­ков - крови, печени (кроме ферментов), скелетных мышц. У молодняка на­блюдается отставание в росте и развитии, трудноустранимое в последующие периоды.

42.Избыток белка в рационе ведет к его непроизводительной трате, по­скольку значительная часть аминокислот дезаминируется и используется в энергетических целях. Вследствие усиленного распада кетогенных ами­нокислот, а также неполного окисления жирных кислот в тканях и крови увеличивается содержание кетоновых тел. Возникают ацидоз, аутоинто­ксикация, падает продуктивность. Особенно резкие изменения наступают при избытке белка и одновременном дефиците углеводов.

43. Роль печени в белковом обмене.

44.Печёночные клетки животного организма располагают большим набором ферментов участвующих в превращении аминокислот и белков.

45.1. Печень синтезирует многие белки на экспорт – это тканевые белки и белки плазмы крови (альбумины, глобулины) и белки, принимающие участие в свертывание крови (протромбин, фибриноген, проконвертин и проакцелерин).

46.2. В печени идет образование заменимых аминокислот и азотистых оснований нуклеиновых кислот из простых предшественников.

47.3. Дезаминирование аминокислот и распад углеродного скелета для выработки энергии и обеспечение глюконеогенеза.

48.4. Катаболизм гемопротеидов и образование жёлчных пигментов (билирубин и билливердин) и выделение их в кишечник. В этом активное участие принимает глюкуроновая кислота.

49.5. Обезвреживание аммиака и образование мочевины.

50.6. Инактивация (действие серной и глюкуроновой кислот) ядовитых аминов: индол, скатол, крезол, фенол, пуриновые основания, которые образуются в кишечнике при гидролизе и под влиянием на белок бактерий.

Регуляцию обмен белков в организме осуществляется структурами центральной нервной системы главным образом через органы внутренней секреции (систему гипотала­мус- гипофиз - периферические эндокринные железы).

Гормон роста - полипептид, выделяемый передней долей гипофиза. Он стимулирует синтез РНК и белка практически во всех тканях организма. Однако характер его действия и мишени меняются по мере роста организма.

Инсулин, помимо углеводного обмена, регулирует и обмен белков. При повышении содержания аминокислот в крови он стимулирует их поступление в клетки, усиливает анаболизм тканевых белков и подавляет катаболизм аминокислот.

Тироксин - гормон щитовидной железы. Его действие проявляется в периоды, когда организм нуждается в повышении процессов синтеза белка. Он также стимулирует рост и дифференцировку тканей, обладает специфическим усиливающим действием на синтез окислительных митохондриальных ферментов.

Эстрогены - стероидные гормоны, образующиеся в женском организме (в яичниках) и стимулирующие синтез РНК и белка в клетках матки. Андрогены - мужские стероидные гормоны, образующиеся в яичках. По сравнению с женскими стероидами мужские оказывают более широкое влияние, так как стимулируют синтез РНК и белков во многих тканях организма, включая клетки поперечно-полосатых мышц.

51.Из ряда катаболических гормонов влияние на обмен белков оказывают глюкокортикоиды, вырабатывающиеся корой надпочечников. Эти гормоны усиливают расщепление белков в клетках различных тканей и тормозят синтез белка. В то же время они стимулируют синтез белка в печени.

2. Обмен углеводов и его регуляция.

53.Углеводный обмен - совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных.

54.В организме постоянно происходит обмен углеводов. Однако уровень сахара в крови (гликемия) является величиной относительно постоянной для животных одного вида и возраста: у лошадей - 65–95 мг %, у жвачных - 40–60, у человека - 80–120 мг %, свиней -60–90 мг % , кролик – 80 – 100мг%, куры – 160 – 200мг%. Повышение уровня сахара в крови выше нормы – гипергликемия, понижение – гипогликемия. Углеводы в организме животного находятся в виде моносахаров: глюкоза, фруктоза, галактоза; в виде сложных сахаров – гликогена в печени 3 – 5% и в мышечной ткани около 1% от массы тела животного.

55.Основная часть (70 %) переваренных углеводов корма окисляется в тканях моногастричных животных до углекислого газа и воды с образованием энергии, часть (25- 27 %) превращается в жир и небольшое количество (3-5 %) используется для синтеза гликогена.

56. Биологическая роль углеводов в организме животного.

57.Углеводы в организме животного выполняют пластическую, энергетическую и защитную роль.

58.1. Основная биологическая роль углеводов для животного определяется их энергетической ценностью. Они легко и быстро извлекаются из депо, окисляются с выделением большого количества энергии (4,1 ккал; 17,2 кДж/г). Примерно 60-75% потребности организма в энергии обеспечивается углеводами.

59.2. Углеводы являются составной частью биологических жидкостей (плазма крови, суставная и плевральная жидкость, слизь и т. д.).

60.3. Углеводы принимают участие в образовании органических веществ костей и хрящей (остеобласты – основные клетки костной ткани – богаты РНК , неколлагеновые белки костной ткани ).

61.4. Углеводы служат компонентами ряда сложных соединений (рибоза, дезоксирибоа) входящих в структуру ДНК и РНК.

62.5. Углеводы образуют гликопротеиды и мукополисахариды (слизь, гликокаликс), которые защищают слизистые оболочки пищеварительного тракта от воздействий механических, химических и биологических факторов.

63. Роль печени в углеводном обмене.

64.1. Печень является гомеостатическим органом в регуляции уровня глюкозы в крови.

65.2. В печени происходит синтез (гликогенез) и депонирование глико­гена или его распад (гликогенолиз) до свободной глюкозы.

66.3. В печени, в процессе обмена углеводов, окисляется глюкоза с выделением энергии и используется в качестве сырья для синтеза жиров. Возможен и обратный процесс, когда из продуктов распада жиров и белков образуются углеводы (глюконеогенез).

67.4. Из глюкозы в печени образуются глюкуроновая кислота, обеспечивающая детоксикационную функцию печени.

68.Превращение углеводов в тканях. Важная роль в обмене углеводов принадлежит: печени – орган превращения и депо углеводов; мышцам – депо углеводов и как главные потребители энергии; головной мозг – энергетические потребности покрываются исключительно за счет углеводов; молочной железе – глюкоза является предшественником молочного сахара; почки – как орган, выводящий избыточное количество сахара. В скелетных мышцах (как и в сердечной) преобладает анаэробный гликогенолиз и гликолиз. Образующаяся при этом энергия частично выделяется в виде тепла, а частично аккумулируется в макроэргических связях АТФ. Образовавшаяся молочная кислота подвергается дальнейшим превраще­ниям в мышцах и печени (85% молочной кислоты ресинтезируется в гликоген в аэробных условиях (путем, обратным гликогенолизу, а 15 % окисляется сначала до пирувата, затем до СО 2 и Н 2 О). В мозгу преобладает аэробное прямое окисление глюкозы с поэтапным, цикличным освобождением СО 2 и Н 2 0 и выделением большого количества энергии, часть которой используется на синтез АТФ.

69. Регуляция углеводного обмена.

70.Перемещение глюкозы из крови в ткани и наоборот регулируется дея­тельностью шести гормонов: инсу­лина (основной фактор), глюкагона, кортизола, адреналина, СТГ и тиро­ксина.

71.Инсулин - единственный гормон, обладающий гипогликемическим действием, поэтому он жизненно важен для обеспечения органов обменной энергией.

72.Остальные гормоны способствуют повышению уровня глюкозы в крови, хотя и разными путями. Глюкагон и адреналин активируют гликогенолиз, кортизол усиливает глюконеогенез, СТГ замедляет поступление глюкозы в клетки и угнетает (при длительном введении) продукцию инсулина, тироксин в умеренных дозах усиливает всасывание глюкозы в кишечнике и её катаболизм в тканях. Падение уровня глюкозы в крови стимулирует секрецию этих гормонов, объединяемых в группу контринсулярных гормонов. Их совместное действие предохраняет организм от резкой гипогликемии, опасной для жизни.

73.Гормональные механизмы регуляции гликемии «запускаются» и контро­лируются центральной нервной системой, прежде всего гипоталамическими центрами. В вентромедиальном отделе гипоталамуса имеются центральные, а в печени и сосудах периферические глюкорецепторы, воспринимающие изме­нения уровня глюкозы. При раздражении центров гипоталамуса можно вы­звать гипергликемию.

3. Обмен липидов и его регуляция.

75.Липиды - органические вещества, входящие в состав животных и растительных тканей , нерастворимые в воде, но растворимые в органических растворителях и друг в друге. Липиды - жиры большая группа органических соединений , включающая в себя триглицериды, холестерол, эфиры холестерола, свободные жирные кислоты, фосфолипиды, сфинголипиды.

76.Жировым обменом называют совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма.

77.Липиды составляют в среднем 10-20% тела животных. В основном это триглицериды, содержащие насыщенные (преимущественно) и ненасыщенные жирные кислоты. У свиней при сальном откорме, у волов и валухов содержание липидов может возрастать до 35-50 %. У курдючных, овец масса курдючного жира иногда превышает 50 % живой массы.

78.Свободный жир , содержащийся в теле, разделяют на протоплазматический и резервный. Протоплазматический жир входит в состав мембран, митохондрий, микросом и других клеточных структур. Его состав и содержание довольно постоянны (примерно 25 % общего жира). Наиболее богатыми жирами клетки мозга, яичников, семенников, а также сперма.

79.Резервный жир представляет собой запас энергии и откладывается в клетках жировой ткани - адипоцитах. Депо резервного жира являются подкожная клетчатка, сальник, околопочечная и околосердечная капсулы. Адипоциты располагаются также между мышечными пучками, в межальвеолярной ткани и в других местах.

80.В состав жира входят насыщенные жирные кислоты (стеариновая, пальмитиновая) и ненасыщенные (олеиновая, линолевая, линоленовая, арахидоновая). У разных животных жирные кислоты могут находится в различных пропорциях, поэтому они отличаются по температуре плавления и йодному числу. Жиры, содержащие в большом количестве насыщенные жирные кислоты, имеют более высокую точку плавления. Температура плавления жиров следующая: коровье масло – 19-24,50, свиное сало – 36-46, куриный жир – 33-40, гусиный жир – 26-34, баранье сало – 44-50, говяжье сало – 31-38, собачье сало – 37-40, подсолнечное масло минус 21, хлопковое 34, конопляное и льняное - 170.

81.Наряду со свободным жиром в организме имеется жир, связанный с углеводами и белками в виде липопротеидов, гликолипидов, фосфолипидов, функции которых весьма разнообразны.

Биологическая роль жиров.

Структурная функция . Липиды принимают участие в построении мембран клеток всех органов и тканей. Липиды, входящие в состав нервных клеток и их отростков, обеспечивают направленность потоков нервных сигналов, участвуют в передаче нервного импульса, создании межклеточных контактов.

Они участвуют в образовании многих биологически активных соединений - служат предшественниками простагландинов, стероидных гормонов (половых и коры надпочечников), холина (витамина В4).

Энергетическая функция . Липиды обеспечивают 50% всей энергии, необходимой организму. При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

82.Функция терморегуляции . Будучи плохим проводником тепла, жировая ткань защищает организм от резких колебаний температуры внешней среды. Это имеет важное значение для животных северных широт. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровному животному жить в холодной воде полярного океана.
У многих млекопитающих (в раннем постнатальном периоде и взрослых животных впадающих в спячку) существует специальная жировая ткань, играющая в основном роль терморегулятора, своеобразного биологического «обогревателя». Эту ткань называют «бурым жиром». Она содержит большое количество митохондрий и железосодержащих пигментов – цитохромов. Такой жир интенсивно окисляется и быстро выделяет тепло, выполняя важную роль в поддержании температурного гомеостаза.

83.Жир – поставщик так называемой эндогенной воды - при окислении 100 г жира выделяются 107 мл воды. Благодаря такой воде существуют многие пустынные животные.

84.Защитная (амортизационная) - слой жира защищает нежные органы от ударов и сотрясений (например, околопочечная капсула, жировая подушка около глаза).

85.Жиры являются растворителями витаминов А, E, D, К и способствуют их всасыванию в кишечнике.

86.Липиды, выделяемые сальными железами, придают коже эластичность, предохраняют ее от высыхания и растрескивания.

87.Обмен липидов в тканях. В кишечнике под влиянием ферментов поджелудочного и кишечного сока часть потребленного жира (~30-40 %) гидролизуется с образованием жирных кислот, моно- и диглицеридов. После абсорбции жирных кислот и глицеридов в виде холеиновых комплексов или мицеллярного раствора в энтероцитах кишечника к ним присоединяется белок и образуются хиломикроны и липопротеиды низкой плотности. Эти соединения с лимфой, через грудной лимфатический проток, попадают в венозную кровь каудальной полой вены, а затем попадают в легкие, печень и периферийные ткани.

88.В легких имеются особые клетки гистиоциты, которые задерживают часть хиломикронов и липопротеидов, что предохраняет артериальную кровь от избыточного поступления жира. Увеличение концентрации жира в крови повышает ее свертываемость и вызывает закупорку мелких кровеносных сосудов. Гистиоциты легких не только задерживают жир, но и окисляют его. Освободившееся при этом энергия используется в метаболизме самого легкого и часть идет на согревание вдыхаемого воздуха.

89.В гепатоцитах печени хиломикроны подвергаются гидролизу с образованием жирных кислот. Они окисляются или используются для синтеза специ­фических для организма триглицеридов, фосфолипидов, холестерина, кето­новых тел, которые снова поступают в кровь. Часть жира может откладывать­ся в виде запаса в жировых депо.

90.В адипоцитах жировой ткани из поступивших с кровью компонентов (хиломикроны и липопротеиды) выделяются жирные кислоты, триглицериды и депонируются в виде жира, характерного для данного вида животного. Однако следует подчеркнуть, что основным источником для синтеза жира в клетках жировой ткани служат углеводы. Регулируется данный процесс гормоном поджелудочной железы – инсулином.

91.В крови хиломикроны и липопротеиды частично расщепляются липопротеидлипазой на более мелкие комплексы. Энергия, котороя пр этом освобождается, утилизируется организмом.

92.Регуляция обмена липидов. В основе регуляции жирового обмена лежит нейроэндокринный механизм поддержании баланса между процессами мобилизации и отложения жира. Ведущим звеном этого механизма являются ядра гипоталамуса, ведающие пищевой активностью животных, чувством голода и аппетита. Длительное пищевое возбуждение и потребление избытка корма усиливают отложение жира, потеря аппетита, наоборот, ведет к исхуданию.

93.Регулирующие влияния гипоталамического пищевого центра могут осуществляться через симпатоадреналовую и гипоталамо-гипофизарную системы или путем непосредственного влияния вегетативных нервов на адипоциты жировых депо (симпатические нервы стимулируют липолиз, парасимпатические - липогенез).

94.Жиромобилизующим эффектом обладают гормоны адреналин, норадреналин, СТГ, ТТГ, тироксин, глюкагон, депонирующим - инсулин.

95.В печени происходит важнейшее превращение жирных кислот, из которых синтезируются жиры, свойственные для данного вида животного. Под действием фермента липазы жиры расщепляются на жирные кислоты и глицерин. Дальнейшая судьба глицерина похожа на судьбу глюкозы. Его превращение начинается с участием АТФ и заканчивается распадом до молочной кислоты с последующим окислением до углекислого газа и воды. Иногда при необходимости печень может синтезировать гликоген из молочной кислоты.

В печени также осуществляется синтез жиров и фосфатидов, которые поступают в кровь, транспортируются по всему организму. Значительную роль она играет в синтезе холестерина и его эфиров. При окислении холестерина в печени образуются желчные кислоты, которые выделяются с желчью и участвуют в процессах пищеварения.

Печень принимает участие в обмене жирорастворимых витаминов, является главным депо ретинола и его провитамина - каротина. Она способна синтезировать цианокобаламин.

26 . 05.2017

Сказ про углеводный обмен в организме человека, про причины сбоя в организме, про то, как можно улучшить обмен углеводами и лечится ли этот сбой таблетками. Я все рассказал в этой статье. Поехали!

— Ты, Иван-царевич, на меня не смотри. Я — Волк. Мне положено одним мясом питаться. Для человека важны и травки всякие, и фрукты-овощи. Без них не будет у тебя ни сил, ни здоровья...

Привет, друзья! О том, насколько важен углеводный обмен в организме человека, сказано немало, но нет ничего более забываемого, чем прописные истины. Поэтому, не расписывая сложную биохимию, я кратко поведаю то основное, что ни в коем случае нельзя выбрасывать из головы. Итак, читайте мою презентацию и запоминайте!

Полезное многообразие

В других статьях я уже сообщал о том, что все подразделяются на моно- , ди- , три- , олиго- и полисахариды. Всасываться из кишечного тракта могут только простые, сложные должны сперва расщепиться на составные части.

Чистый моносахарид — это глюкоза. Именно она ответственна за уровень сахара в нашей крови, накопление гликогена в качестве «топлива» в мышцах и печени. Она даёт силу мускулам, обеспечивает мозговую деятельность, образует энергетические молекулы АТФ, которые расходуются на синтез ферментов, пищеварительные процессы, обновление клеток и выведение продуктов распада.

Диеты при различных заболеваниях порой включают полный отказ от углеводов, но такие воздействия могут быть только кратковременными, до достижения терапевтического эффекта. Зато можно регулировать процесс похудения путём уменьшения углеводов в пище, ибо много запасов — так же нехорошо, как и мало.

Углеводный обмен в организме человека: цепочка превращений

Углеводный обмен в организме человека (УО) начинается, когда ты кладёшь в рот углеводистую пищу и начинаешь её пережёвывать. Во рту присутствует полезный фермент — амилаза. Он кладёт начало расщеплению крахмала.

Пища поступает в желудок, потом в двенадцатиперстную кишку, где начинается интенсивный процесс расщепления, и наконец — в тонкий кишечник, где этот процесс продолжается и готовые моносахариды всасываются в кровь.

Большая часть оседает в печени, преобразуясь в гликоген — наш главный энергетический запас. В печёночные клетки глюкоза проникает без труда. Накапливают , но в меньшей степени. Чтобы проникнуть через клеточные оболочки внутрь миозитов, нужно потратить часть энергии. Да и места там маловато.

Зато мышечные нагрузки помогают проникновению. Получается интересный эффект: мышечный гликоген при физической активности быстро израбатывается, но одновременно с этим новому пополнению проще просочиться сквозь клеточные мембраны, и накопиться в виде гликогена.

Этот механизм отчасти объясняет выработку нашей мускулатуры в процессе занятий спортом. Пока мы не тренируем мускулы — они не в состоянии накапливать много энергии «про запас».

Про нарушение белкового обмена (БО), я писал .

Сказ про то, почему нельзя выбирать одно и игнорировать другое

Итак мы выяснили, что самый главный моносахарид — это глюкоза. Именно она обеспечивает наше тело энергетическим запасом. Тогда почему нельзя питаться только ею, и плюнуть на все остальные углеводы? На это есть несколько причин.

  1. В чистом виде она сразу же всасывается в кровь, вызывая резкий скачок сахара. Гипоталамус даёт сигнал: «Снизить до нормы!» Поджелудочная железа выбрасывает порцию инсулина, он возвращает баланс, отправляя излишки в печень и мышцы в виде гликогена. И так снова и снова. Очень быстро клетки железы износятся и перестанут нормально функционировать, что приведёт к и другим тяжёлым осложнениям, исправить которые уже будет невозможно.
  1. Хищник имеет самый короткий пищеварительный тракт, и нужные для энергетической подпитки углеводы синтезирует из тех же остатков белковых молекул. Он к этому привычен. Наш человеческий устроен несколько по-другому. Мы должны получать углеводистую пищу, в объёме около половины всех питательных веществ, в том числе и ради , которые помогают перистальтике и дают пищу полезным бактериям в толстом отделе. Иначе запор и гнилостные процессы с образованием ядовитых отходов нам обеспечены.

  1. Мозг — это орган, который не может накапливать энергетический запас, как мышцы или печень. Для его работы необходимо постоянное поступление глюкозы из крови, и больше половины всего запаса гликогена печени уходит именно ему. По этой причине, при значительных умственных нагрузках (научная деятельность, сдача экзаменов и пр.) может . Это нормальный, физиологичный процесс.
  1. Для синтеза белков в организме нужна не только глюкоза. Остатки молекул полисахаридов дают нужные фрагменты для образования нужных нам «строительных элементов».
  1. Вместе с растительной пищей к нам приходят и прочие полезные вещества, которые можно получить и из животной пищи, но без пищевых волокон. А мы уже выяснили, что они нашему кишечнику очень необходимы.

Есть и другие, не менее важные причины, почему нам нужны все сахара, а не только моносахариды.

Углеводный обмен в организме человека и его болезни

Одними из известных нарушений углеводного обмена являются наследственные непереносимости тех или иных сахаров (глюкогенозы). Так непереносимостть лактозы у детей развивается из-за отсутствия или недостаточности фермента — лактазы. Развиваются симптомы кишечной инфекции. Перепутав диагноз, можно нанести непоправимый вред малышу, накармливая его антибиотиками. При подобном нарушении лечение состоит в добавлении соответствующего фермента в молоко перед употреблением.

Существуют и другие сбои переваривании отдельных сахаров из-за недостаточности соответствующих ферментов, в тонком или толстом отделе кишечника. Улучшить положение можно, но таблеток от нарушений не существует. Как правило, эти хвори лечатся исключением тех или иных сахаров из питания.

Другим известным нарушением является диабет, который может быть как врождённый, так и приобретённый в результате неправильного пищевого поведения, (форма яблока), и других заболеваний, поражающих поджелудочную железу. Поскольку инсулин — единственный фактор, который снижает сахар крови, его недостаточность вызывает гипергликемию, которая приводит к сахарному мочеизнурению — большое количество глюкозы выводится из организма через почки.

При резком снижении сахара в крови страдает прежде всего головной мозг. Возникают судороги, больной теряет сознание и впадает в гипогликемическую кому, из которой его можно вывести, если сделать внутривенное вливание глюкозы.

Нарушения УО приводят к связанному с ним нарушению жирового обмена, повышением образования триглицеридов в низкоплотных липопротеинов в крови — и как результат, нефропатия, катаракта, кислородное голодание тканей.

Как нормализовать углеводный обмен в организме человека? Баланс в организме достигается . Если речь не идёт о наследственных болячках и хворях, мы сами, вполне сознательно, несём ответственность за все нарушения Вещества, о которых шла речь, в основном поступают с пищей.

Отличная новость!

Спешу тебя порадовать! Мой «Курс Активного Похудения» уже доступен для тебя в любой точке планеты, где есть интернет. В нем, я раскрыл основной секрет похудения на любое количество килограмм. Без диет и без голодовок. Сброшенные килограммы больше не вернутся. Качай курс, худей и радуйся своим новым размерам в магазинах одежды!

На сегодня все.
Спасибо, что дочитали мой пост до конца. Делитесь этой статьей со своими друзьями. Подписывайтесь на мой блог.
И погнали дальше!

Полученные из пищи молекулы веществ вступают в организме человека в реакции только после того, как эти молекулы попадают в кровь, лимфу и другие жидкости организма. Концентрация молекул глюкозы в крови человека характеризует углеводный обмен в организме.

«Обмен углеводов по мере накопления сведений раскрывается как всё более сложный процесс, поскольку вновь устанавливаемые факты требуют внесения некоторых изменений в уже сложившиеся представления о механизмах реакций» (Дж. Роут, 1966).

Поддержание постоянства уровня глюкозы в крови обеспечивается процессами повышения и понижения этого уровня с целью приведения его в норму.

Повышение уровня глюкозы в крови осуществляется поступлением глюкозы в кровь после приёмов пищи, извлечением глюкозы из её запасов и образованием глюкозы печенью из неуглеводных компонентов (через образование из них гликогена). Понижение уровня глюкозы в крови достигается расходом глюкозы клетками организма для получения энергии, образованием запасов глюкозы в виде гликогена и превращением глюкозы в жир, а также выделением глюкозы с мочой, причем последний вариант является безвозвратной потерей глюкозы для организма.

«Среди регуляторных факторов основное значение принадлежит центральной нервной системе (ЦНС), которая контролирует обмен углеводов на уровне всего организма. Любые раздражители, как внутренние, так и внешние, воспринимаются соответствующими центрами мозга и немедленно на них реагируют. В организме естественным раздражителем служит сниженное против нормы содержание глюкозы в крови (гипогликемия). Поступая в мозг, такая кровь раздражает определенный центр, который вырабатывает импульсы, вызывающие повышение распада гликогена до глюкозы и восстановление её уровня в крови до нормы» (М. В. Ермолаев, Л. П. Ильичёва, 1989).

В нормальных условиях печень содержит около 100 г гликогена, но его может накапливаться и до 400 г. «Гликоген печени легко превращается в глюкозу, поэтому он является резервом, за счёт которого организм получает глюкозу, если её содержание в крови падает ниже нормального. Образование гликогена из глюкозы называется гликогенезом, а превращение гликогена в глюкозу — гликогенолизом. Мышцы также способны накапливать глюкозу в виде гликогена, но мышечный гликоген превращается в глюкозу не так легко, как гликоген печени» (Дж. Роут, 1966).

Кроме ЦНС большую роль в регуляции углеводного обмена играет гормональная система. Важное место в углеводном обмене и в регуляции содержания глюкозы в крови принадлежит гормону поджелудочной железы инсулину. По химической природе инсулин является белком. «В противоположность действию других гормонов он понижает концентрацию сахара в крови, усиливая превращение глюкозы в гликоген как в печени, так и в мышцах, способствуя надлежащему окислению глюкозы в тканях, а также не допуская расщепления гликогена печени с образованием глюкозы» (Дж. Роут, 1966).

В последние годы много внимания уделяют способности инсулина снижать уровень глюкозы в крови путем усиления её использования клетками. «Механизм его действия заключается в том, что инсулин повышает проницаемость мембран клеток для глюкозы, в результате чего её уровень в крови снижается (гипогликемический эффект)» (М. В. Ермолаев, Л. П. Ильичёва, 1989).

Первой ступенью химических превращений при образовании гликогена из глюкозы является процесс фосфорилирования глюкозы с образованием глюкозо-6-фосфата. Этот процесс контролируется инсулином.

Конечными продуктами окисления глюкозы в организме являются углекислота и вода; окисление сопровождается выделением энергии. Главное соединение, участвующее в обмене глюкозы, — это опять же глюкозо-6-фосфат (активированная глюкоза). Только в таком (фосфорилированном) виде глюкоза может участвовать в дальнейших её превращениях до конечных продуктов обмена с выделением энергии. Фосфорилирование глюкозы (присоединение к молекулам глюкозы фосфора за счет АТФ клетки) контролируется инсулином, стимулирующим активность фермента глюкокиназы в клетках. В отсутствие достаточного поступления инсулина превращение внеклеточной глюкозы во внутриклеточный глюкозо-6-фосфат задерживается. Образовавшийся глюкозо-6-фосфат выйти из клетки не может и подвергается различным превращениям. При избытке глюкозы в клетках инсулин стимулирует синтез гликогена и жиров.

«Широко известно, что пища, богатая углеводами, вызывает тучность. Организм обладает способностью превращать углеводы в жиры, однако механизм этого превращения еще неясен» (Дж. Роут, 1966).

Исходным материалом для утилизации углеводов на клеточном уровне являются гликоген или глюкоза. И в том, и в другом случае образуется глюкозо-6-фосфат (фосфатная группа присоединяется к шестому атому углерода молекулы глюкозы), подвергающийся дальнейшим превращениям.

Отметим, что в процессе освобождения глюкозы из гликогена участвует специфически действующий фермент печени глюкозо-6-фосфатаза, отсутствующая в мышцах. Освобожденная из гликогена глюкоза поступает в ток крови для поддержания необходимого уровня глюкозы.

Важную роль в регуляции углеводного обмена в организме играет и гормон адреналин. Этот гормон вырабатывается мозговым веществом надпочечников. В углеводном обмене действие адреналина противоположно действию инсулина. Адреналин способствует расщеплению гликогена в печени с образованием глюкозы и повышает уровень глюкозы в крови. В мышцах адреналин активирует распад глюкозы до молочной кислоты.

Усиленное выделение адреналина надпочечниками в кровь наступает, например, при сильных эмоциональных возбуждениях (страх, гнев и т. п.). В историческом плане за сильным эмоциональным возбуждением следовало усиление физических нагрузок на организм (преследование добычи, противника, бегство от более сильного противника и т. п.), требовавшее увеличения уровня глюкозы в крови. Эволюционно это так и закрепилось. При сильных эмоциональных возбуждениях усиленно выделяется адреналин, что и вызывает образование глюкозы из гликогена печени и увеличение содержания сахара в крови. Это совершенно нормальный физиологически обусловленный процесс. Таким же образом организм обеспечивает усиленное питание органов глюкозой и при интенсивной работе. Значительное усиление секреции адреналина в кровь при неоправданно бурных эмоциях часто приводит к развитию в результате этого гипергликемии, превышающей почечный «порог» и к непроизводительному выделению глюкозы с мочой.

Гормон поджелудочной железы глюкагон проявляет себя в печени. Глюкагон, как и адреналин, повышает уровень глюкозы в крови, усиливая распад гликогена в печени с образованием глюкозы.

Гормоны коры надпочечников глюкокортикоиды стимулируют повышение образования глюкозы в печени путем выработки глюкозы из неуглеводных компонентов.

Адренокортикотропный гормон передней доли гипофиза (АКТГ) через усиление продукции глюкокортикоидов также повышает уровень глюкозы в крови.

Необходимо подчеркнуть, что из гормонов только инсулин снижает уровень глюкозы в крови, все другие гормоны, влияющие на углеводный обмен, повышают этот уровень и носят название контрин-сулярных гормонов. В здоровом организме такое противоположно направленное действие гормонов обеспечивает сбалансированное нормальное снабжение глюкозой органов и тканей.

Очень своеобразно влияет на уровень глюкозы в крови гормон щитовидной железы тироксин. Этот вопрос будет подробно рассмотрен ниже.

Нарушения обмена углеводов в организме практически проявляются в патологических изменениях уровня глюкозы в крови. Такими нарушениями могут быть гипогликемия (пониженный уровень глюкозы в крови) и гипергликемия (повышенный уровень глюкозы в крови). При гипергликемии часть глюкозы может попадать в мочу (глюкозурия). В моче здорового человека обычно глюкозы практически нет, в лаборатории обычного типа она не обнаруживается. Из первичной мочи глюкоза практически полностью реабсорбируется (всасывается обратно в кровь) в почечных канальцах и во вторичной моче уже не фиксируется. При некоторых заболеваниях, а также при определенных условиях и у здорового человека уровень глюкозы в крови оказывается в такой степени повышенным, что часть глюкозы в почках не всасывается обратно в кровь из первичной мочи (не реабсорбируется) и выделяется с вторичной мочой. Глюкоза в моче (глюкозурия) обнаруживается при превышении в крови почечного «порога» глюкозы, равного примерно 7,21 ммоль/л (160 мг глюкозы в 100 мл крови, 160 мг%).

Выше говорилось о гипергликемиях, в основе которых заложены эмоциональные возбуждения, связанные с усилением поступления в кровь адреналина из надпочечников. Это вызывает усиление освобождения глюкозы из гликогена в печени и поступление глюкозы в кровь. Такого типа гипергликемии могут сопровождаться повышением уровня глюкозы в крови до значений, превышающих почечный «порог». В результате наступает эмоциональная глюкозурия. «Этот тип глюкозурии могут вызвать, например, особенно трудный экзамен или эмоциональное напряжение при спортивных состязаниях» (Дж. Роут, 1966).

Эмоциональная глюкозурия может оказывать решающее влияние на результаты спортивных состязаний, особенно состязаний высокого уровня. У спортсменов довольно сложное положение. С одной стороны, спортсмен не должен в своем эмоциональном возбуждении переходить ту неуловимую границу, за которой начинается расточительное выделение глюкозы крови с мочой. Потеря глюкозы (а с нею и воды) непременно ухудшит личные результаты спортсмена. В таких случаях говорят: «Спортсмен перегорел».

Но, с другой стороны, спортсмен не должен оставаться спокойным во время состязаний, т. к. в этом случае он не использует запасы глюкозы из печени, не доведёт уровень глюкозы крови до почечного «порога» и не израсходует излишки глюкозы крови немедленно на состязаниях. Это неизбежно снизит личные результаты спортсмена.

Степень необходимого эмоционального возбуждения спортсмена во время состязаний устанавливается опытным путем.

Эмоционально обусловленное повышение уровня глюкозы в крови необходимо учитывать в лечебной работе в связи с сахарным диабетом.

В нашей практике имел место довольно курьёзный случай. Прошедшая акупунктурный курс лечения от сахарного диабета пожилая женщина без всяких видимых оснований приходила в возбуждение при каждом посещении для определения уровня глюкозы крови поликлиники, расположенной буквально в соседнем здании. Соответственно этому состоянию анализы крови на сахар показывали несколько повышенные значения. Оказалось, что у больной несколько лет тому назад при посещении этой же поликлиники случился инфаркт миокарда. С тех пор каждое посещение поликлиники сопровождалось у этой женщины возбуждением и естественным физиологическим повышением уровня глюкозы крови. Родственникам больной пришлось прибегнуть к услугам лаборатории, производившей забор крови для анализа на дому. Уровень глюкозы в крови, как и предполагалось, оказался нормальным.

Совершенно естественная (физиологическая) глюкозурия может наблюдаться у здоровых людей при употреблении в пищу большого количества сахара, большого количества легко усваиваемых организмом углеводов (сладости, виноград и др.). В таких случаях часто наступает пищевая глюкозурия. Это кратковременный тип глюкозурии. Сахар всасывается быстрее, чем организм успевает превратить его в гликоген и поддерживать содержание глюкозы в крови ниже почечного «порога». Начинается выделение глюкозы с мочой. Даже в тех случаях, когда эта глюкоза вовсе не избыточна в организме. Как только уровень глюкозы в крови окажется ниже почечного «порога», выделение глюкозы с мочой прекратится.

Некоторые способы определения сахара в моче могут дать ошибочную реакцию на сахар на последних стадиях беременности и в период кормления грудью. Такой тип глюкозурии называют ложной глюкозурией, т. к. реакцию на сахар дает присутствующая в моче лактоза.

В очень редких случаях встречаются люди со сниженным против нормы почечным «порогом». В этом случае глюкоза выделяется с мочой даже при нормальном содержании глюкозы в крови (почечный диабет, ренальный диабет).

Повышенным против нормы уровнем глюкозы в крови (гипергликемией) часто сопровождаются токсикозы различного происхождения (отравления окисью углерода, фосфором и др.). Это обычная защитная (стрессовая) реакция организма. Особенно опасны отравления ацетоном, дающие ложную клиническую картину диабетической комы (высокий сахар в крови, запах ацетона, потеря сознания).

Очень важное значение при сахарном диабете приобретает вопрос о так называемых инсулярных гипергликемиях, развивающихся при снижении продукции инсулина поджелудочной железой. Дефицит инсулина в крови приводит к нарушению механизма отложения глюкозы в виде гликогена в печени, в крови остаётся излишняя глюкоза, уровень её заметно повышается. Исследованию этой и других клинических картин, типичных для сахарного диабета, будут посвящены следующие главы этой работы.

Снижение уровня глюкозы в крови (гипогликемия) оказывает очень существенное влияние на организм человека. «Гипогликемия… клинически проявляется слабостью, потерей сознания, диффузным потоотделением, снижением деятельности клеток нервной системы, для которых глюкоза является основным и единственным источником энергии, и поэтому они наиболее чувствительны к её недостатку. Эти признаки начинают появляться при концентрации глюкозы в крови 2,4 ммоль/л (0,432 г/л) и становятся клинически выраженными при 2,1 ммоль/л (0,378 г/л) глюкозы» (М. В. Ермолаев, Л. П. Ильичёва, 1989).

Гипогликемия часто проявляется при передозировке инсулина, вводимого больным сахарным диабетом. Возможность появления гипогликемии постоянно учитывается при применении экзогенного инсулина.

Для оценки состояния углеводного обмена в организме наибольшее практическое значение имеет определение концентрации глюкозы в крови и в моче. Существует несколько методов определения уровня глюкозы в крови. Одни из них позволяют определять только глюкозу, а метод Хагедорна-Йенсена обнаруживает как глюкозу, так и некоторые другие вещества (мочевую кислоту, креатин, пентозу и пр.). Эти вещества вместе с глюкозой получили название «сахара крови», уровень которого выше уровня истинной глюкозы в крови.

Для оценки способности поджелудочной железы вырабатывать необходимое количество инсулина часто прибегают к функциональной пробе на толерантность к глюкозе (глюкозотолерантному тесту, ГТТ). У этого теста есть и другое название — «сахарная нагрузка». Тест сопровождается построением «сахарных кривых», дающих представление о динамике уровня глюкозы в крови после сахарной нагрузки.

В качестве сахарной нагрузки обычно используют однократный прием натощак 50 г глюкозы в стакане воды. У обследуемого до приема глюкозы берут кровь из пальца для определения концентрации в ней глюкозы. Затем дается сахарная нагрузка с определением глюкозы крови через каждые 30 минут в течение 2—3 часов.

Содержание углеводов в живом организме - не более 2 % от сухого остатка массы тела. Основная часть находится в мышцах и печени в виде гликогена. Энергетические расходы организма покрываются преимущественно за счёт окисления углеводов. Они используются для синтеза глюкопротеидов, мукополисахаридов, нуклеиновых кислот, коферментов и аминокислот, а также входят в состав клеточных структур элементов.

Углеводы представляют собой важный источник энергии. Хотя непосредственным донором энергии в процессах жизнедеятельности является АТФ, его ресинтез в значительной мере является результатом расщепления углеводов. (Зимкин Н.В. 1975 ). При полном окислении 1 г. углеводов освобождается 4,1 ккал энергии, т.е. в 2,3 раза меньше, чем при окислении жиров.

Углеводы в пище человека в основном растительного происхождения. После всасывания моносахариды попадают через брыжеечную и воротную вены в печень, где фруктоза и галактоза превращаются в глюкозу. Глюкоза подвергается окислению, а также накапливается в виде гликогена. Гликоген составляет 5 % всей массы печени. Это важное дело углеводов в организме. (Платонов В.Н. 1988 ). В печени осуществляется синтез углеводов также из жирных кислот, лактата, жерувата и безазотистого остатка аминокислот. Одновременно с окислением и депонированием в печени идут процессы ферментативного образования свободной глюкозы (в присутствии глюкозо-6-фосфатозы). В отличие от печени, в мышцах нет глюкозо-6-фосфатозы. Поэтому в них свободная глюкоза не образуется.

В печёночные клетки глюкоза проходит свободно, без затрат энергии. Проницаемость мышечной клетки для глюкозы по сравнению с печёночными клетками понижена. В мышцах, как и в печени, депонируется гликоген. Его содержание в скелетных мышцах доходит до 1,5-2 % от всей массы этой ткани. Общая емкость депо углеводов организма человека, имеющего массу 70 кг, составляет 400-700 г. Однако гликоген мышц не может служить регулятором уровня глюкозы в крови, а является резервным горючим для мышечной работы. Освобождение энергии гликогена происходит при гликогенолизе: на каждый глюкозный остаток гликогена синтезируется 3 молекулы АТФ. При изобильном поступлении углеводов в организм они превращаются в жирные кислоты и депонируются в виде жира. (Петровский Б.В. 1984 ).

В процессе окисления углеводов освобождается энергия, которая используется для биосинтеза, образования тепла, а также для осуществления специфических форм жизнедеятельности. В организме происходит постоянный обмен глюкозой между печенью, кровью, мышцами, мозгом и другими органами. Главный потребитель глюкозы - скелетные мышцы. Расщепление в них углеводов осуществляется по типу анаэробных и аэробных реакций. Окислительное фосфорирование глюкозы является энергетически более выгодным, чем её бескислородный распад. В условиях относительного мышечного покоя анаэробные процессы расщепления глюкозы (гликолиз) тормозятся аэробным обменом. И только в зрелых электролитах гликолитические процессы являются ведущими. (Ноздрачёв А.Д. 1991 ). В клетках новообразований окислительные процессы подавлены гликолетическим распадом углеводов. Анаэробные расщепления гликогена или глюкозы заканчивается образованием молочной кислоты, большинство которой превращается в лактат и выходит в кровь. Лактат крови может быть использован в сердечной мышце как непосредственный субстрат окисления, а в покоящихся мышцах и печени - для ресинтеза гликогена. Продуктами аэробного расщепления углеводов является вода и углекислый газ, которые выводятся из организма по своим каналам. (Коц Я.М. 1982 ).

Многие ткани организма удовлетворяют свои запросы в энергетических веществах за счёт поглощения глюкозы из крови. Нормальный уровень глюкозы в крови (80-120 мг %) поддерживается с помощью регуляторных воздействий на синтез или расщепление гликогена в печени. Снижение содержания глюкозы в крови ниже 70 мг % (гипогликемия) нарушает снабжение тканей глюкозой. Превышение нормального уровня глюкозы в крови наблюдается после приёма пищи (алиментарная гипергликемия), во время кратковременной и интенсивной мышечной работы (миогенная, или рабочая гипергликемия) и при эмоциональном возбуждении (эмоциональная гипергликемия). Если содержание глюкозы в крови превышает 150-180 мг %, то глюкоза обнаруживается в моче (глюкозурия). Это представляет собой путь выведения из организма лишнего количества углеводов. Опасность для жизни представляет нарушение углеводного обмена, при котором гипергликемия является результатом нарушения проницаемости клеточных мембран для сахара при недостатке инсулина. При этом с мочой выделяется не избыточный, а жизненно необходимый клеткам сахар. (Воробьёва Е.А. 1981 ).

Углеводный обмен в организме регулируется нервной системой. Это было установлено Клодом Бернаром, который после укола иглой в дно IX желудочка мозга ("сахарный укол") наблюдал усиленный выход углеводов из печени с последующими гипергликемией и гликозурией. Эти наблюдения свидетельствуют о наличии в продолговатом мозгу центров, регулирующих углеводный обмен. Позднее было установлено, что высшие центры, регулирующие обмен углеводов, находятся в подбугровой области промежуточного мозга. При раздражении этих центров наблюдаются такие же явления, как и при уколе в дно IX желудочка. Большое значение в регуляции углеводного обмена имеют условнорефлекторные раздражители. Одним из доказательств этого служит увеличение концентрации глюкозы в крови при возникновении эмоций (например, у спортсменов перед ответственными стартами). (Геселевич В.А. 1969 ).

Влияние центральной нервной системы на углеводный обмен осуществляется главным образом посредствам симпатической иннервации. Раздражение симпатических нервов усиливает образование адреналина в надпочечниках. Он вызывает расщепления гликогена в печени и скелетных мышцах и повышение в связи с этим концентрации глюкозы в крови. Гормон поджелудочной железы глюкоген также стимулирует эти процессы. Гормон поджелудочной железы инсулин является антагонистом адреналина и глюкогена. Он непосредственно влияет на углеводный обмен печёночных клеток, активирует синтез глюкогена и тем самым способствует его депонированию. В регуляции углеводного обмена участвуют гормоны надпочечников, щитовидной железы и гипофиза. (Зимкин Н.В. 1975 ).

Углеводный обмен при мышечной деятельности.

В начале мышечной работы, а иногда еще в предстартовый период мобилизируются углеводные ресурсы организма. Результатом усиленного расщепления гликогена печени является умеренная гипергликемия. Скорость выхода глюкозы из печени составляет при работе большой мощности 300 мг/мин. Основным потребителем глюкозы крови во время работы является мозговая ткань. Определённую часть глюкозы крови поглощает сердечная мышца. Относительно мало потребляют глюкозы крови скелетные мышцы, которые предпочтительно используют в энергетических процессах собственный гликоген, расщепление которого начинается с самого начала работы. Лишь по мере снижения уровня собственного гликогена в мышцах усиливается использование глюкозы крови. (Ноздрачёв А.Д. 1991 ).

По мере продолжения работы содержание глюкозы в крови нормализуется, и оно поддерживается в течение весьма длительного периода в пределах нормы. В то же время происходит снижение содержания гликогена в мышцах и печени, что приводит в конце концов к падению концентрации глюкозы в крови, сопровождающееся ухудшением работоспособности. Гипогликемию и сопровождающие её явления можно успешно предотвратить при длительных физических нагрузках своевременным приёмом углеводных растворов. Если уровень глюкозы в крови снижается до 40 мг %, резко нарушается деятельность Ц.Н.С., вплоть до потери сознания. Это состояние называется гипогликемическим шоком. (Ильин Е.П. 1980 ).