Виды скалярных величин. Векторная величина

Вектор − чисто математическое понятие, которое лишь применяется в физике или других прикладных науках и которое позволяет упростить решение некоторых сложных задач.
Вектор − направленный отрезок прямой.
 В курсе элементарной физики приходится оперировать двумя категориями величин − скалярными и векторными .
Скалярными величинами (скалярами) называют величины, характеризующиеся числовым значением и знаком. Скалярами являются длина − l , масса − m , путь − s , время − t , температура − T , электрический заряд − q , энергия − W , координаты и т.д.
 К скалярным величинам применяются все алгебраические действия (сложение, вычитание, умножение и т.д.).

Пример 1 .
 Определить полный заряд системы, состоящий из зарядов, входящих в нее, если q 1 = 2 нКл, q 2 = −7 нКл, q 3 = 3 нКл.
Полный заряд системы
q = q 1 + q 2 + q 3 = (2 − 7 + 3) нКл = −2 нКл = −2 × 10 −9 Кл.

Пример 2 .
 Для квадратного уравнения вида
ax 2 + bx + с = 0;
x 1,2 = (1/(2a)) × (−b ± √{b 2 − 4ac}).

Векторными величинами (векторами) называют величины, для определения которых необходимо указать кроме численного значения так же и направление. Векторы − скорость v , сила F , импульс p , напряженность электрического поля E , магнитная индукция B и др.
 Численное значение вектора (модуль) обозначают буквой без символа вектора или заключают вектор между вертикальными черточками r = |r| .
 Графически вектор изображают стрелкой (рис. 1),

Длина которой в заданном масштабе равна его модулю, а направление совпадает с направлением вектора.
Два вектора равны, если совпадают их модули и направления.
 Векторные величины складываются геометрически (по правилу векторной алгебры).
 Нахождение векторной суммы по данным составляющим векторам называется сложением векторов.
 Сложение двух векторов производят по правилу параллелограмма или треугольника. Суммарный вектор
с = a + b
равен диагонали параллелограмма, построенного на векторах a и b . Модуль его
с = √{a 2 + b 2 − 2abcosα} (рис. 2).


При α = 90°, с = √{a 2 + b 2 } − теорема Пифагора.

Тот же вектор c можно получить по правилу треугольника, если из конца вектора a отложить вектор b . Замыкающий вектор c (соединяющий начало вектора a и конец вектора b ) является векторной суммой слагаемых (составляющих векторов a и b ).
 Результирующий вектор находят как замыкающую той ломанной линии, звеньями которой являются составляющие векторы (рис. 3).


Пример 3 .
 Сложить две силы F 1 = 3 Н и F 2 = 4 Н, векторы F 1 и F 2 составляют с горизонтом углы α 1 = 10° и α 2 = 40°, соответственно
F = F 1 + F 2 (рис. 4).

 Результатом сложения этих двух сил является сила, называемая равнодействующей. Вектор F направлен по диагонали параллелограмма, построенного на векторах F 1 и F 2 , как сторонах, и по модулю равен ее длине.
 Модуль вектора F находим по теореме косинусов
F = √{F 1 2 + F 2 2 + 2F 1 F 2 cos(α 2 − α 1)},
F = √{3 2 + 4 2 + 2 × 3 × 4 × cos(40° − 10°)} ≈ 6,8 H.
Если
(α 2 − α 1) = 90°, то F = √{F 1 2 + F 2 2 }.

Угол, который вектор F составляет с осью Ox, находим по формуле
α = arctg((F 1 sinα 1 + F 2 sinα 2)/(F 1 cosα 1 + F 2 cosα 2)),
α = arctg((3.0,17 + 4.0,64)/(3.0,98 + 4.0,77)) = arctg0,51, α ≈ 0,47 рад.

Проекция вектора a на ось Ox (Oy) − скалярная величина, зависящая от угла α между направлением вектора a и оси Ox (Oy). (рис. 5)


 Проекции вектора a на оси Ox и Oy прямоугольной системы координат. (рис. 6)


 Чтобы не допустить ошибок при определении знака проекции вектора на ось, полезно запомнить следующее правило: если направление составляющей совпадает с направлением оси, то проекция вектора на эту ось положительна, если же направление составляющей противоположно направлению оси, то проекция вектора отрицательна. (рис. 7)


 Вычитание векторов − это сложение, при котором к первому вектору прибавляется вектор, численно равный второму, противоположно направленный
a − b = a + (−b) = d (рис. 8).

 Пусть надо из вектора a вычесть вектор b , их разность − d . Чтобы найти разность двух векторов, надо к вектору a прибавить вектор (−b ), то есть вектором d = a − b будет вектор, направленный от начала вектора a к концу вектора (−b ) (рис. 9).

 В параллелограмме, построенном на векторах a и b как сторонах, одна диагональ c имеет смысл суммы, а другая d − разности векторов a и b (рис. 9).
 Произведение вектора a на скаляр k равно вектору b = ka , модуль которого в k раз больше модуля вектора a , а направление совпадает с направлением a при положительном k и противоположно ему при отрицательном k.

Пример 4 .
 Определить импульс тела массой 2 кг, движущегося со скоростью 5 м/с. (рис. 10)

Импульс тела p = mv ; p = 2 кг.м/с = 10 кг.м/с и направлен в сторону скорости v .

Пример 5 .
 Заряд q = −7,5 нКл помещен в электрическое поле с напряженностью E = 400 В/м. Найти модуль и направление силы, действующей на заряд.

Сила равна F = qE . Так как заряд отрицательный, то вектор силы направлен в сторону, противоположную вектору E . (рис. 11)


Деление вектора a на скаляр k равнозначно умножению a на 1/k.
Скалярным произведением векторов a и b называют скаляр «c», равный произведению модулей этих векторов на косинус угла между ними
(a.b) = (b.a) = c,
с = ab.cosα (рис. 12)


Пример 6 .
 Найти работу постоянной силы F = 20 Н, если перемещение S = 7,5 м, а угол α между силой и перемещением α = 120°.

Работа силы равна по определению скалярному произведению силы и перемещения
A = (F.S) = FScosα = 20 H × 7,5 м × cos120° = −150 × 1/2 = −75 Дж.

Векторным произведением векторов a и b называют вектор c , численно равный произведению модулей векторов a и b, умноженных на синус угла между ними:
с = a × b = ,
с = ab × sinα.
 Вектор c перпендикулярен плоскости, в которой лежат векторы a и b , причем его направление связано с направлением векторов a и b правилом правого винта (рис. 13).


Пример 7 .
 Определить силу, действующую на проводник длиной 0,2 м, помещенный в магнитном поле, индукция которого 5 Тл, если сила тока в проводнике 10 А и он образует угол α = 30° с направлением поля.

Сила Ампера
dF = I = Idl × B или F = I(l)∫{dl × B},
F = IlBsinα = 5 Тл × 10 А × 0,2 м × 1/2 = 5 Н.

Рассмотрите решение задач .
 1. Как направлены два вектора, модули которых одинаковы и равны a, если модуль их суммы равен: а) 0; б) 2а; в) а; г) a√{2}; д) a√{3}?

Решение .
 а) Два вектора направлены вдоль одной прямой в противоположные стороны. Сумма этих векторов равна нулю.

 б) Два вектора направлены вдоль одной прямой в одном направлении. Сумма этих векторов равна 2a.

 в) Два вектора направлены под углом 120° друг к другу. Сумма векторов равна a. Результирующий вектор находим по теореме косинусов:

a 2 + a 2 + 2aacosα = a 2 ,
cosα = −1/2 и α = 120°.
 г) Два вектора направлены под углом 90° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 2a 2 ,
cosα = 0 и α = 90°.

 д) Два вектора направлены под углом 60° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 3a 2 ,
cosα = 1/2 и α = 60°.
Ответ : Угол α между векторами равен: а) 180°; б) 0; в) 120°; г) 90°; д) 60°.

2. Если a = a 1 + a 2 ориентации векторов, то, что можно сказать о взаимной ориентации векторов a 1 и a 2 , если: а) a = a 1 + a 2 ; б) a 2 = a 1 2 + a 2 2 ; в) a 1 + a 2 = a 1 − a 2 ?

Решение .
 а) Если сумма векторов находится как сумма модулей этих векторов, то вектора направлены вдоль одной прямой, параллельно друг другу a 1 ||a 2 .
 б) Если вектора направлены под углом друг к другу, то их сумма находится по теореме косинусов для параллелограмма
a 1 2 + a 2 2 + 2a 1 a 2 cosα = a 2 ,
cosα = 0 и α = 90°.
вектора перпендикулярны друг другу a 1 ⊥ a 2 .
 в) Условие a 1 + a 2 = a 1 − a 2 может выполниться, в случае если a 2 − нулевой вектор, тогда a 1 + a 2 = a 1 .
Ответы . а) a 1 ||a 2 ; б) a 1 ⊥ a 2 ; в) a 2 − нулевой вектор.

3. Две силы по 1,42 H каждая приложены к одной точке тела под углом 60° друг к другу. Под каким углом надо приложить к той же точке тела две силы по 1,75 H каждая, чтобы действие их уравновешивало действие первых двух сил?

Решение.
 По условию задачи две силы по 1,75 Н уравновешивают две силы по 1,42 Н. Это возможно, если равны модули результирующих векторов пар сил. Результирующий вектор определим по теореме косинусов для параллелограмма. Для первой пары сил:
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 ,
для второй пары сил, соответственно
F 2 2 + F 2 2 + 2F 2 F 2 cosβ = F 2 .
Приравняв левые части уравнений
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 2 + F 2 2 + 2F 2 F 2 cosβ.
Найдем искомый угол β между векторами
cosβ = (F 1 2 + F 1 2 + 2F 1 F 1 cosα − F 2 2 − F 2 2)/(2F 2 F 2).
После вычислений,
cosβ = (2.1,422 + 2.1,422.cos60° − 2.1,752)/(2.1,752) = −0,0124,
β ≈ 90,7°.

Второй способ решения .
 Рассмотрим проекцию векторов на ось координат ОХ (рис.).

 Воспользовавшись соотношением между сторонами в прямоугольном треугольнике, получим
2F 1 cos(α/2) = 2F 2 cos(β/2) ,
откуда
cos(β/2) = (F 1 /F 2)cos(α/2) = (1,42/1,75) × cos(60/2) и β ≈ 90,7°.

4. Вектор a = 3i − 4j . Какова должна быть скалярная величина c, чтобы |ca | = 7,5?
Решение .
ca = c(3i − 4j ) = 7,5
Модуль вектора a будет равен
a 2 = 3 2 + 4 2 , и a = ±5,
тогда из
c.(±5) = 7,5,
найдем, что
c = ±1,5.

5. Векторы a 1 и a 2 выходят из начала координат и имеют декартовы координаты концов {6, 0} и {1, 4}, соответственно. Найдите вектор a 3 такой, что: а) a 1 + a 2 + a 3 = 0; б) a 1 a 2 + a 3 = 0.

Решение .
 Изобразим векторы в декартовой системе координат (рис.)

 а) Результирующий вектор вдоль оси Ox равен
a x = 6 + 1 = 7.
Результирующий вектор вдоль оси Oy равен
a y = 4 + 0 = 4.
Чтобы сумма векторов была равна нулю, необходимо, чтобы выполнялось условие
a 1 + a 2 = −a 3 .
Вектор a 3 по модулю будет равен суммарному вектору a 1 + a 2 , но направлен в противоположную ему сторону. Координата конца вектора a 3 равна {−7, −4}, а модуль
a 3 = √{7 2 + 4 2 } = 8,1.

Б) Результирующий вектор вдоль оси Ox равен
a x = 6 − 1 = 5,
а результирующий вектор вдоль оси Oy
a y = 4 − 0 = 4.
При выполнении условия
a 1 a 2 = −a 3 ,
вектор a 3 будет иметь координаты конца вектора a x = –5 и a y = −4, а модуль его равен
a 3 = √{5 2 + 4 2 } = 6,4.

6. Посыльный проходит 30 м на север, 25 м на восток, 12 м на юг, а затем в здании поднимается на лифте на высоту 36 м. Чему равны пройденный им путь L и перемещение S?

Решение .
 Изобразим ситуацию, описанную в задаче на плоскости в произвольном масштабе (рис.).

Конец вектора OA имеет координаты 25 м на восток, 18 м на север и 36 вверх (25; 18; 36). Путь, пройденный человеком равен
L = 30 м + 25 м + 12 м +36 м = 103 м.
Модуль вектора перемещения найдем по формуле
S = √{(x − x o) 2 + (y − y o) 2 + (z − z o) 2 },
где x o = 0, y o = 0, z o = 0.
S = √{25 2 + 18 2 + 36 2 } = 47,4 (м).
Ответ : L = 103 м, S = 47,4 м.

7. Угол α между двумя векторами a и b равен 60°. Определите длину вектора с = a + b и угол β между векторами a и c . Величины векторов равны a = 3,0 и b = 2,0.

Решение .
 Длину вектора, равного сумме векторов a и b определим воспользовавшись теоремой косинусов для параллелограмма (рис.).

с = √{a 2 + b 2 + 2abcosα}.
После подстановки
с = √{3 2 + 2 2 + 2.3.2.cos60°} = 4,4.
Для определения угла β воспользуемся теоремой синусов для треугольника ABC:
b/sinβ = a/sin(α − β).
При этом следует знать, что
sin(α − β) = sinαcosβ − cosαsinβ.
 Решая простое тригонометрическое уравнение, приходим к выражению
tgβ = bsinα/(a + bcosα),
следовательно,
β = arctg(bsinα/(a + bcosα)),
β = arctg(2.sin60/(3 + 2.cos60)) ≈ 23°.
 Сделаем проверку, воспользовавшись теоремой косинусов для треугольника:
a 2 + c 2 − 2ac.cosβ = b 2 ,
откуда
cosβ = (a 2 + c 2 − b 2)/(2ac)
и
β = arccos((a 2 + c 2 − b 2)/(2ac)) = arccos((3 2 + 4,4 2 − 2 2)/(2.3.4,4)) = 23°.
Ответ : c ≈ 4,4; β ≈ 23°.

Решите задачи .
 8. Для векторов a и b , определенных в примере 7, найдите длину вектора d = a − b угол γ между a и d .

9. Найдите проекцию вектора a = 4,0i + 7,0j на прямую, направление которой составляет угол α = 30° с осью Ox. Вектор a и прямая лежат в плоскости xOy.

10. Вектор a составляет угол α = 30° с прямой АВ, a = 3,0. Под каким углом β к прямой АВ нужно направить вектор b (b = √{3}), чтобы вектор с = a + b был параллелен АВ? Найдите длину вектора c .

11. Заданы три вектора: a = 3i + 2j − k ; b = 2i − j + k ; с = i + 3j . Найдите а) a + b ; б) a + c ; в) (a, b) ; г) (a, c)b − (a, b)c .

12. Угол между векторами a и b равен α = 60°, a = 2,0, b = 1,0. Найдите длины векторов с = (a, b)a + b и d = 2b − a/2 .

13. Докажите, что векторы a и b перпендикулярны, если a = {2, 1, −5} и b = {5, −5, 1}.

14. Найдите угол α между векторами a и b , если a = {1, 2, 3}, b = {3, 2, 1}.

15. Вектор a составляет с осью Ox угол α = 30°, проекция этого вектора на ось Oy равна a y = 2,0. Вектор b перпендикулярен вектору a и b = 3,0 (см. рис.).

Вектор с = a + b . Найдите: a) проекции вектора b на оси Ox и Oy; б) величину c и угол β между вектором c и осью Ox; в) (a, b); г) (a, c).

Ответы :
 9. a 1 = a x cosα + a y sinα ≈ 7,0.
 10. β = 300°; c = 3,5.
 11. а) 5i + j; б) i + 3j − 2k; в) 15i − 18j + 9 k.
 12. c = 2,6; d = 1,7.
 14. α = 44,4°.
 15. а) b x = −1,5; b y = 2,6; б) с = 5; β ≈ 67°; в) 0; г) 16,0.
 Изучая физику, Вы имеете большие возможности продолжить свое образование в техническом ВУЗе. Для этого потребуется параллельное углубление знаний по математике, химии, языку, реже другие предметы. Победитель республиканской олимпиады, Савич Егор, заканчивает один из факультетов МФТИ, на котором, большие требования предъявляются к знаниям по химии. Если требуется помощь в ГИА по химии , то обращайтесь к профессионалам, Вам точно окажут квалифицированную и своевременную помощь.

Смотрите еще:

Скалярные и векторные величины

  1. Векторное исчисление (например, перемещение (s),сила (F), ускорение (a), скорость (V)энергия (Е)) .

    скалярные величины, которые полностью определяются заданием их числовых значений (длина (L), площадь (S), объм (V),время (t), масса (m) и т. д.) ;

  2. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие 🙂

  3. векторная величина имеет численное выражение и направление: скорость, ускорение, сила, электромагнитная индукция, перемещение и т. п. , а скалярная только численное выражение объем, плотность, длиа, ширина, высота, масса (не путать с весом) темпереатура
  4. векторные например скорость (v),сила (F),перемещение (s),импульс (р), энергия (Е). над каждой из этих букв ставится стрелочка-вектор. поэтому они векторные. а скалярные-это масса (m),объем (V),площадь (S),время (t),высота (h)
  5. Векторные это прямолинейные, касательные движения.
    Скалярные это замкнутые движения, которые экранируют векторные.
    Векторные движения передаются через скалярные, как через посредников, как ток передатся от атома к атому по проводнику.
  6. Скалярные величины: температура, объм, плотность, электрический потенциал, потенциальная энергия тела (например, в поле силы тяжести) . Также модуль любого вектора (например, перечисленных ниже) .

    Векторные величины: радиус-вектор, скорость, ускорение, напряжнность электрического поля, напряжнность магнитного поля. И многие другие:-

  7. Скалярная величина (скаляр) это физическая величина, которая имеет только одну характеристику численное значение.

    Скалярная величина может быть положительной или отрицательной.

    Примеры скалярных величин: масса, температура, путь, работа, время, период, частота, плотность, энергия, объем, электроемкость, напряжение, сила тока и т. д.

    Математические действия со скалярными величинами это алгебраические действия.

    Векторная величина

    Векторная величина (вектор) это физическая величина, которая имеет две характеристики модуль и направление в пространстве.

    Примеры векторных величин: скорость, сила, ускорение, напряженность и т. д.

    Геометрически вектор изображается как направленный отрезок прямой линии, длина которого в масштабе модуль вектора.

(тензорам ранга 0), с другой - тензорным величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.

В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).

Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.

Употребление терминов вектор и векторная величина в физике

В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

В математике, произнося «вектор» понимают скорее вектор вообще, то есть любой вектор любого сколько угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно («вектор такого-то и такого-то пространства»), или иметь в виду подразумеваемое явно описанным контекстом.

В физике же практически всегда речь идёт не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определённой их конкретной («физической») привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удаётся достичь несколькими простыми «приемами». Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, связанный с «обычным физическим пространством» (трёхмерным пространством классической физики или четырёхмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определённо охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».

Всё сказанное ещё в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае ещё жёстче подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).

В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:

Примеры векторных физических величин: скорость , сила , поток тепла.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснён выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трёхмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяжённостью, тем не менее имеет вполне определённое направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трёхмерного случая классической физики и для четырёхмерной пространственно-временной формулировки, обычной для современной физики.

Классический трёхмерный случай

Будем исходить из обычного трёхмерного «геометрического» пространства, в котором мы живём и можем перемещаться.

В качестве исходного и образцового вектора возьмём вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда даёт новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов даёт новый вектор.

Также новый вектор даёт дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объёму).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr , мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как

Из скорости и ускорения, умножением на скаляр (массу), появляются

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • с помощью формулы силы Лоренца напряжённость электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).

Векторы мощный инструмент математики и физики. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами.

Данная глава содержит подробное изложение материала, необходимого для того, чтобы приступить к изучению механики:

! Сложение векторов

! Умножение скаляра на вектор

! Угол между векторами

! Проекция вектора на ось

! Векторы и координаты на плоскости

! Векторы и координаты в пространстве

! Скалярное произведение векторов

К тексту данного приложения полезно будет вернуться на первом курсе при изучении аналитической геометрии и линейной алгебры чтобы осознать, например, откуда берутся аксиомы линейного и евклидова пространства.

7.1 Скалярные и векторные величины

В процессе изучения физики мы встречаем два типа величин скалярные и векторные.

Определение. Скалярная величина, или скаляр это физическая величина, для задания которой (в подходящих единицах измерения) достаточно одного числа.

Скаляров очень много в физике. Масса тела равна 3 кг, температура воздуха равна 10 С, напряжение в сети равно 220 В. . . Во всех этих случаях интересующая нас величина задаётся одним-единственным числом. Следовательно, масса, температура и электрическое напряжение являются скалярами.

Но скаляр в физике это не просто число. Скаляр есть число, снабжённое размерностью1 . Так, задавая массу, мы не можем написать m = 3; надо указать единицу измерения например, m = 3 кг. И если в математике мы можем сложить числа 3 и 220, то в физике сложить 3 килограмма и 220 вольт не получится: мы имеем право складывать лишь те скаляры, которые обладают одинаковой размерностью (массу с массой, напряжение с напряжением и т. д.).

Определение. Векторная величина, или вектор это физическая величина, характеризуемая: 1) неотрицательным скаляром; 2) направлением в пространстве. При этом скаляр называется модулем вектора, или его абсолютной величиной.

Предположим, что автомобиль движется со скоростью 60 км/ч. Но ведь это неполная информация о движении, не так ли? Может оказаться важным и то, куда едет автомобиль, в каком именно направлении. Поэтому важно знать не только модуль (абсолютную величину) скорости автомобиля в данном случае это 60 км/ч но и её направление в пространстве. Значит, скорость является вектором.

Другой пример. Допустим, на полу лежит кирпич массой 1 кг. На кирпич действует сила 100 Н (это модуль силы, или её абсолютная величина). Как будет двигаться кирпич? Вопрос лишён смысла до тех пор, пока не указано направление действия силы. Если сила действует вверх, то и кирпич будет двигаться вверх. Если сила действует горизонтально, то и кирпич поедет горизонтально. А если сила действует вертикально вниз, то кирпич вообще не сдвинется с места он будет только вжиматься в пол. Мы видим, таким образом, что сила также является вектором.

Векторная величина в физике также обладает размерностью. Размерность вектора это размерность его модуля.

Мы будем обозначать векторы буквами со стрелкой. Так, вектор скорости можно обозначить

через ~v, а вектор силы через F . Собственно, вектор это и есть стрелка или, как ещё говорят, направленный отрезок (рис. 7.1 ).

Рис. 7.1. Вектор ~v

Начальная точка стрелки называется началом вектора, а конечная точка (остриё) стрелки

концом вектора. В математике вектор с началом в точке A и концом в точке B обозначается

также AB; нам такое обозначение тоже иногда понадобится.

Вектор, начало и конец которого совпадают, называется нулевым вектором (или нулём) и

обозначается ~ . Нулевой вектор есть попросту точка; он не имеет определённого направления.

Длина нулевого вектора, разумеется, равна нулю.

1 Попадаются и безразмерные скаляры: коэффициент трения, коэффициент полезного действия, показатель преломления среды. . . Так, показатель преломления воды равен 1;33 это исчерпывающая информация, никакой размерностью данное число не обладает.

Рисование стрелок полностью решает задачу графического представления векторных величин. Направление стрелки указывает направление данного вектора, а длина стрелки в подходящем масштабе есть модуль этого вектора.

Предположим, например, что два автомобиля двигаются навстречу друг другу со скоростями u = 30 км/ч и v = 60 км/ч. Тогда векторы ~u и ~v скоростей автомобилей будут иметь противоположные направления, причём длина вектора ~v в два раза больше (рис. 7.2 ).

Рис. 7.2. Вектор ~v вдвое длиннее

Как вы уже поняли, буква без стрелки (например, u или v в предыдущем абзаце) обозначает модуль соответствующего вектора. В математике модуль вектора ~v обычно обозначается j~vj, но физики, если ситуация позволяет, предпочтут именно v букву без стрелки.

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых.

Пусть имеются два коллинеарных вектора. Если их направления совпадают, то векторы называются сонаправленными; если же их направления различны, то векторы называются противоположно направленными. Так, выше на рис. 7.2 векторы ~u и ~v являются противоположно направленными.

Два вектора называются равными, если они сонаправлены и имеют равные модули (рис. 7.3 ).

Рис. 7.3. Векторы ~a и b равны: ~a = b

Таким образом, равенство векторов отнюдь не означает непременного совпадения их начал и концов: мы можем переносить вектор параллельно самому себе, и при этом получится вектор, равный исходному. Такой перенос постоянно применяется в тех случаях, когда желательно свести начала векторов в одну точку например, при нахождении суммы или разности векторов. К рассмотрению операций над векторами мы и переходим.

Физика и математика не обходятся без понятия «векторная величина». Ее необходимо знать и узнавать, а также уметь с нею оперировать. Этому обязательно стоит научиться, чтобы не путаться и не допускать глупых ошибок.

Как отличить скалярную величину от векторной?

Первая всегда имеет только одну характеристику. Это ее числовое значение. Большинство скалярных величин могут принимать как положительные, так и отрицательные значения. Их примерами может служить электрический заряд, работа или температура. Но есть такие скаляры, которые не могут быть отрицательными, например, длина и масса.

Векторная величина, кроме числовой величины, которая всегда берется по модулю, характеризуется еще и направлением. Поэтому она может быть изображена графически, то есть в виде стрелки, длина которой равна модулю величины, направленной в определенную сторону.

При письме каждая векторная величина обозначается знаком стрелки на буквой. Если идет речь о числовом значении, то стрелка не пишется или ее берут по модулю.

Какие действия чаще всего выполняются с векторами?

Сначала - сравнение. Они могут быть равными или нет. В первом случае их модули одинаковые. Но это не единственное условие. У них должны быть еще одинаковые или противоположные направления. В первом случае их следует называть равными векторами. Во втором они оказываются противоположными. Если не выполняется хотя бы одно из указанных условий, то векторы не равны.

Потом идет сложение. Его можно сделать по двум правилам: треугольника или параллелограмма. Первое предписывает откладывать сначала один вектор, потом от его конца второй. Результатом сложения будет тот, который нужно провести от начала первого к концу второго.

Правило параллелограмма можно использовать, когда нужно сложить векторные величины в физике. В отличие от первого правила, здесь их следует откладывать от одной точки. Потом достроить их до параллелограмма. Результатом действия следует считать диагональ параллелограмма, проведенную из той же точки.

Если векторная величина вычитается из другой, то они снова откладываются из одной точки. Только результатом будет вектор, который совпадает с тем, что отложен от конца второго к концу первого.

Какие векторы изучают в физике?

Их так же много, как скаляров. Можно просто запомнить то, какие векторные величины в физике существуют. Или знать признаки, по которым их можно вычислить. Тем, кто предпочитает первый вариант, пригодится такая таблица. В ней приведены основные векторные физические величины.

Теперь немного подробнее о некоторых из этих величин.

Первая величина - скорость

С нее стоит начать приводить примеры векторных величин. Это обусловлено тем, что ее изучают в числе первых.

Скорость определяется как характеристика движения тела в пространстве. Ею задается числовое значение и направление. Поэтому скорость является векторной величиной. К тому же ее принято разделять на виды. Первый является линейной скоростью. Ее вводят при рассмотрении прямолинейного равномерного движения. При этом она оказывается равной отношению пути, пройденного телом, ко времени движения.

Эту же формулу допустимо использовать при неравномерном движении. Только тогда она будет являться средней. Причем интервал времени, который необходимо выбирать, обязательно должен быть как можно меньше. При стремлении промежутка времени к нулю значение скорости уже является мгновенным.

Если рассматривается произвольное движение, то здесь всегда скорость - векторная величина. Ведь ее приходится раскладывать на составляющие, направленные вдоль каждого вектора, направляющего координатные прямые. К тому же определяется он как производная радиус-вектора, взятая по времени.

Вторая величина - сила

Она определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Поскольку сила - векторная величина, то она обязательно имеет свое значение по модулю и направление. Так как она действует на тело, то важным является еще и точка, к которой приложена сила. Чтобы получить наглядное представление о векторах сил, можно обратиться к следующей таблице.

Также еще векторной величиной является равнодействующая сила. Она определяется как сумма всех действующих на тело механических сил. Для ее определения необходимо выполнить сложение по принципу правила треугольника. Только откладывать векторы нужно по очереди от конца предыдущего. Результатом окажется тот, который соединяет начало первого с концом последнего.

Третья величина - перемещение

Во время движения тело описывает некоторую линию. Она называется траекторией. Эта линия может быть совершенно разной. Важнее оказывается не ее внешний вид, а точки начала и конца движения. Они соединяются отрезком, который называется перемещением. Это тоже векторная величина. Причем оно всегда направлено от начала перемещения к точке, где движение было прекращено. Обозначать его принято латинской буквой r.

Здесь может появиться такой вопрос: «Путь - векторная величина?». В общем случае это утверждение не является верным. Путь равен длине траектории и не имеет определенного направления. Исключением считается ситуация, когда рассматривается прямолинейное движение в одном направлении. Тогда модуль вектора перемещения совпадает по значению с путем, и направление у них оказывается одинаковым. Поэтому при рассмотрении движения вдоль прямой без изменения направления перемещения путь можно включить в примеры векторных величин.

Четвертая величина - ускорение

Оно является характеристикой быстроты изменения скорости. Причем ускорение может иметь как положительное, так и отрицательное значение. При прямолинейном движении оно направлено в сторону большей скорости. Если перемещение происходит по криволинейной траектории, то вектор его ускорения раскладывается на две составляющие, одна из которых направлена к центру кривизны по радиусу.

Выделяют среднее и мгновенное значение ускорения. Первое следует рассчитывать как отношение изменения скорости за некоторый промежуток времени к этому времени. При стремлении рассматриваемого интервала времени к нулю говорят о мгновенном ускорении.

Пятая величина - импульс

По-другому его еще называют количеством движения. Импульс векторной величиной является из-за того, что напрямую связан со скоростью и силой, приложенной к телу. Обе они имеют направление и задают его импульсу.

По определению последний равен произведению массы тела на скорость. Используя понятие импульса тела, можно по-другому записать известный закон Ньютона. Получается, что изменение импульса равно произведению силы на промежуток времени.

В физике важную роль имеет закон сохранения импульса, который утверждает, что в замкнутой системе тел ее суммарный импульс является постоянным.

Мы очень кратко перечислили, какие величины (векторные) изучаются в курсе физики.

Задача о неупругом ударе

Условие. На рельсах стоит неподвижная платформа. К ней приближается вагон со скоростью 4 м/с. Массы платформы и вагона — 10 и 40 тонн соответственно. Вагон ударяется о платформу, происходит автосцеп. Необходимо вычислить скорость системы «вагон-платформа» после удара.

Решение. Сначала требуется ввести обозначения: скорость вагона до удара - v1, вагона с платформой после сцепки - v, масса вагона m1, платформы - m2. По условию задачи необходимо узнать значение скорости v.

Правила решения подобных заданий требуют схематичного изображения системы до и после взаимодействия. Ось OX разумно направить вдоль рельсов в ту сторону, куда движется вагон.

В данных условиях систему вагонов можно считать замкнутой. Это определяется тем, что внешними силами можно пренебречь. Сила тяжести и реакция опоры уравновешены, а трение о рельсы не учитывается.

Согласно закону сохранения импульса, их векторная сумма до взаимодействия вагона и платформы равна общему для сцепки после удара. Сначала платформа не двигалась, поэтому ее импульс был равен нулю. Перемещался только вагон, его импульс - произведение m1 и v1.

Так как удар был неупругий, то есть вагон сцепился с платформой, и дальше он стали катиться вместе в ту же сторону, то импульс системы не изменил направления. Но его значение стало другим. А именно произведением суммы массы вагона с платформой и искомой скорости.

Можно записать такое равенство: m1 * v1 = (m1 + m2) * v. Оно будет верно для проекции векторов импульсов на выбранную ось. Из него легко вывести равенство, которое потребуется для вычисления искомой скорости: v = m1 * v1 / (m1 + m2).

По правилам следует перевести значения для массы из тонн в килограммы. Поэтому при подстановке их в формулу следует сначала умножить известные величины на тысячу. Простые расчеты дают число 0,75 м/с.

Ответ. Скорость вагона с платформой равна 0,75 м/с.

Задача с разделением тела на части

Условие. Скорость летящей гранаты 20 м/с. Она разрывается на два осколка. Масса первого 1,8 кг. Он продолжает двигаться в направлении, в котором летела граната, со скоростью 50 м/с. Второй осколок имеет массу 1,2 кг. Какова его скорость?

Решение. Пусть массы осколков обозначены буквами m1 и m2. Их скорости соответственно будут v1 и v2. Начальная скорость гранаты - v. В задаче нужно вычислить значение v2.

Для того чтобы больший осколок продолжал двигаться в том же направлении, что и вся граната, второй должен полететь в обратную сторону. Если выбрать за направление оси то, которое было у начального импульса, то после разрыва большой осколок летит по оси, а маленький - против оси.

В этой задаче разрешено пользоваться законом сохранения импульса из-за того, что разрыв гранаты происходит мгновенно. Поэтому, несмотря на то что на гранату и ее части действует сила тяжести, она не успевает подействовать и изменить направление вектора импульса с его значением по модулю.

Сумма векторных величин импульса после разрыва гранаты равна тому, который был до него. Если записать закон сохранения импульса тела в проекции на ось OX, то он будет выглядеть так: (m1 + m2) * v = m1 * v1 - m2 * v2. Из него просто выразить искомую скорость. Она определится по формуле: v2 = ((m1 + m2) * v - m1 * v1) / m2. После подстановки числовых значений и расчетов получается 25 м/с.

Ответ. Скорость маленького осколка равна 25 м/с.

Задача про выстрел под углом

Условие. На платформе массой M установлено орудие. Из него производится выстрел снарядом массой m. Он вылетает под углом α к горизонту со скоростью v (данной относительно земли). Требуется узнать значение скорости платформы после выстрела.

Решение. В этой задаче можно использовать закон сохранения импульса в проекции на ось OX. Но только в том случае, когда проекции внешних равнодействующих сил равна нулю.

За направление оси OX нужно выбрать ту сторону, куда полетит снаряд, и параллельно горизонтальной линии. В этом случае проекции сил тяжести и реакции опоры на OX будут равны нулю.

Задача будет решена в общем виде, так как нет конкретных данных для известных величин. Ответом в ней является формула.

Импульс системы до выстрела был равен нулю, поскольку платформа и снаряд были неподвижны. Пусть искомая скорость платформы будет обозначена латинской буквой u. Тогда ее импульс после выстрела определится как произведение массы на проекцию скорости. Так как платформа откатится назад (против направления оси OX), то значение импульса будет со знаком минус.

Импульс снаряда - произведение его массы на проекцию скорости на ось OX. Из-за того, что скорость направлена под углом к горизонту, ее проекция равна скорости, умноженной на косинус угла. В буквенном равенстве это будет выглядеть так: 0 = — Mu + mv * cos α. Из нее путем несложных преобразований получается формула-ответ: u = (mv * cos α) / M.

Ответ. Скорость платформы определяется по формуле u = (mv * cos α) / M.

Задача о переправе через реку

Условие. Ширина реки по всей ее длине одинакова и равна l, ее берега параллельны. Известна скорость течения воды в реке v1 и собственная скорость катера v2. 1). При переправе нос катера направлен строго к противоположному берегу. На какое расстояние s его снесет вниз по течению? 2). Под каким углом α нужно направить нос катера, чтобы он достиг противоположного берега строго перпендикулярно к точке отправления? Сколько времени t потребуется на такую переправу?

Решение. 1). Полная скорость катера является векторной суммой двух величин. Первая из них течение реки, которое направлено вдоль берегов. Вторая - собственная скорость катера, перпендикулярная берегам. На чертеже получается два подобных треугольника. Первый образован шириной реки и расстоянием, на которое сносит катер. Второй - векторами скоростей.

Из них следует такая запись: s / l = v1 / v2. После преобразования получается формула для искомой величины: s = l * (v1 / v2).

2). В этом варианте задачи вектор полной скорости перпендикулярен берегам. Он равен векторной сумме v1 и v2. Синус угла, на который должен отклоняться вектор собственной скорости, равен отношению модулей v1 и v2. Для расчета времени движения потребуется разделить ширину реки на сосчитанную полную скорость. Значение последней вычисляется по теореме Пифагора.

v = √(v22 – v12), тогда t = l / (√(v22 – v12)).

Ответ. 1). s = l * (v1 / v2), 2). sin α = v1 / v2, t = l / (√(v22 – v12)).