Возрастные особенности поддержания газового состава крови. Возрастные особенности системы крови и кровообращения

Введение

Представление о крови как о системе было создано Г.Ф. Лангом в 1939 г. В эту систему были включены четыре компонента: а) периферическая кровь, циркулирующая по сосудам, б) органы кроветворения, в) органы кроверазрушения, г) регулирующий нейрогуморальный аппарат.

Кровь представляет собой одну из важнейших систем жизнеобеспечения организма, обладающую рядом особенностей. Высокая митотическая активность гемопоэтической ткани обусловливает ее повышенную чувствительность к действию повреждающих факторов, а генетическая детерминированность размножения, дифференцировки, структуры и обмена веществ кровяных клеток создают предпосылки как для геномных нарушений, так и для изменений генетической регуляции.

Своеобразие системы крови состоит и в том, что патологические изменения в ней возникают вследствие нарушения функций не только отдельных ее компонентов, но и других органов и систем организма в целом. Любое заболевание, патологический процесс, а также ряд физиологических сдвигов могут в той или иной степени отразиться на количественных и качественных особенностях состава циркулирующей крови. Этим и определяется огромное значение необходимости изучения крови (как «кровяного зеркала организма») и вскрытия закономерностей ее изменений при различных заболеваниях.

Цель исследования: рассмотреть и изучить морфологию системы крови и её возрастные особенности.

Для достижения поставленной цели решались следующие задачи:

.Рассмотреть составляющие системы крови и их морфологию.

.Определить возрастные особенности системы крови.

1. Морфология системы крови

1.1 Периферическая кровь и ее элементы

Кровь периферическая - это кровь, циркулирующая по сосудам вне кроветворных органов. У взрослого здорового человека на кровь приходится в среднем 7% массы тела

В зависимости от сосудов, в которых протекает кровь, различают ее виды: артериальную, венозную, капиллярную. Между этими видами крови имеются различия по биохимическим и морфологическим показателям, но они незначительны. Например, показатель концентрации водородных ионов (pH среды) в артериальной крови равен 7,35 - 7,47; венозной - 7,33 - 7,45. Эта величина имеет большое физиологическое значение, так как определяет скорость протекания многих физиологических и химических процессов в организме.

Абсолютное большинство циркулирующих форменных элементов крови составляют эритроциты - красные безъядерные клетки. Их количество у мужчин 4,710 +-0,017х10.12/л, у женщин - 4,170 + - 0,017х10.12/л. У здорового человека эритроциты в 85% имеют дискоидную форму с двояковыгнутыми стенками, в 15% - другие формы. Диаметр эритроцита 7-8 мкм, толщина 1-2,4 мкм. Клеточная мембрана эритроцита толщиной 20 нм. Наружная поверхность ее состоит из липидов, олигосахаридов, определяющих антигенный состав клетки - группу крови, сиаловой кислоты и протеина, а внутренняя - из гликотических ферментов, натрия, калия, АТФ, гликопротеина и гемоглобина. Полость эритроцита заполнена гранулами (4,5 нм), содержащими гемоглобин.

Эритроцит является высокоспециализированной клеткой, основная задача которой состоит в транспорте кислорода от легочных альвеол к тканям и двуокиси углерода (СО2) - обратно из тканей к легочным альвеолам. Двояковогнутая форма клетки позволяет обеспечивать наибольшую площадь поверхности газообмена. Диаметр эритроцита около 8 мкм, однако особенности клеточного скелета и структуры мембраны позволяют ему претерпевать значительную деформацию и проходить через капилляры с просветом 2-3 мкм. Такая способность к деформации обеспечивается за счет взаимодействия между белками мембраны (сегмент 3 и гликофорин) и цитоплазмы (спектрин, анкирин и белок 4.1). Дефекты этих белков ведут к морфологическим и функциональным нарушениями эритроцитов. Зрелый эритроцит не имеет цитоплазматических органелл и ядра и поэтому не способен к синтезу белков и липидов, окислительному фосфорилированию и поддержанию реакций цикла трикарбоновых кислот. Он получает большую часть энергии через анаэробный путь Эмбдена-Мейергофа и сохраняет ее в виде АТФ.

Приблизительно 98% массы белков цитоплазмы эритроцита составляет гемоглобин (Hb), молекула которого связывает и транспортирует кислород. Процесс связывания и освобождения кислорода молекулами гемоглобина зависит от давления кислорода, углекислого газа, pH и температуры среды.

Длительность жизни эритроцитов соответствует 120+-12 дням, что установлено с помощью радиоактивной метки. Различают эритроциты молодые (неоциты), зрелые и старые. Наиболее устойчивы к воздействиям неоциты, что особенно ярко проявляется при их замораживании с различными криопротекторами и оттаивании. Постепенное старение клетки приводит к нарушению обменных процессов и ее гибели. В организме человека повседневно погибает около 200 млрд. эритроцитов. Их остатки поглощаются макрофагами селезенки и печени.

Следующими по количеству клеток в крови являются тромбоциты - кровяные пластинки. Их число в крови здорового человека составляет 150000 - 400000/мкл. Тромбоциты, наименьшие по размерц форменные элементы крови, образуются из самых крупных костномозговых клеток - мегакариоцитов. Тромбоциты в циркулирующей крови имеют округлую или овальную форму, диаметром 2,5 мкм. Ядро в клетке отсутствует. В строении кровяных пластинок выделяют однослойную мембрану, периферическую бесструктурную зону (гиаломер) и центральную зернистую зону (грануломер). В гиаломере выявляют при электронной микроскопии плотные микротрубочки. Им отводится роль скелета клетки, а также участие в процессе ретракции сгустка. В грануломере находятся митохондрии, рибосомы, альфа-гранулы, плотные тельца, частицы гликогена. Альфа-гранулы содержат кислую фосфотазу, В-глюкоронидазу, катепсин, что дает возможность их отнести к лизосомам, определяющим функцию клетки. В плотных тельцах находятся серотонин, сокращающий кровеносные сосуды при освобождении, АТФ и АДФ, участвующие в адгезии и реакции освобождения.

Различают в норме тромбоциты: юные (4,2+-0,13%), зрелые (88,2+-0,19%), старые (4,1+-0,21%) и формы раздражения (2,5+-0,1%) дегенеративные и вакуолизированные.

гуморальной (плазменной) системы, состоящей из прокоагулянтных белков;

клеточной системы, состоящей из тромбоцитов.

Конечным результатом активации гуморальной системы свертывания крови является образование фибринового сгустка, или красного тромба, в то время как реакция тромбоцитов, сопровождаемая клеточной адгезией и агрегацией, приводит к образованию тромбоцитарной пробки, или белого тромба. Хотя эти две системы свертывания, как правило, рассматриваются отдельно, следует понимать, что фактически их функции тесно переплетаются. Растворимые факторы свертывания (например, фибриноген и фактор Виллебранда) имеют большое значение для нормальной функции тромбоцитов, и, наоборот, тромбоциты являются важными поставщиками прокоагулянтных белков и необходимым катализатором ряда реакций в растворимой системе свертывания крови.

В целом гемостатические функции тромбоцитов объясняют их способность к адгезии, агрегации, образованию первичного тромбоцитарного сгустка в месте повреждения стенки кровеносного сосуда и освобождению свертывающих факторов, участвующих в выпадении фибрина и ретракции образовавшегося сгустка.

Кроме основной функции кровяные пластинки осуществляют перенос ряда сосудоактивных веществ - серотонина, гистамина и катехоламинов, осуществляют поддержание функции эндотелия сосудов. Тромбоциты, обладая фагоцитарной активностью, способны поглощать жировые капли, вирусы, бактерии, иммунные комплексы. Кровяные пластинки участвуют в воспалительных процессах и иммунологических реакциях. В них находятся как специфические, свойственные только тромбоцитам (НРА:1-5), так и антигены систем АВО, MN, Р, главного комплекса гистосовместимости HLA, но нет антигенов систем Rh, Daffy, Kell, Kidd. Наиболее иммуногены антигены локусов А и В и наименее - локуса С системы HLA.

Средняя продолжительность жизни тромбоцита 9,5+-0,6 суток. В норме 2/3 кровяных пластинок у человека находится в циркулирующей крови и 1/3 - в селезенке и являются своеобразным резервом для быстрой мобилизации в случае необходимости. Между этими частями существует динамический обмен.

Общее число тромбоцитов в организме человека колеблется от 1,0 до 1,5 триллиона, за сутки их обновляется (1,1 - 1,73) х10.11. Процесс терминальной стадии тромбоцитопоэза недостаточно изучен. Возможно, что в ответ на некий сигнал мегакариоциты трансформируются в паукообразные клетки, от которых отходит множество длинных нитевидных отростков (протромбоцитов) с равномерными очагами констрикции. Протромбоциты входят в косномозговые синусоиды и там фрагментируются на тромбоциты, возможно, благодаря сдвигающей силе кровотока. Хотя терминальная стадия тромбоцитопоэза ограничивается только наиболее зрелыми мегакариоцитами, она представляет собой регулируемый процесс. После резкого увеличения периферической потребности в тромбоцитах незамедлительно выявляется увеличение объема этих клеток, что отражает изменения в механизме образования тромбоцитов.

Клетки «белой крови», или лейкоциты, являются основой антимикробной защиты организма. В эту разнородную группу «защиты» входят основные эффекторы иммунных и воспалительных реакций.

Термин «лейкоцит» относится более к внешнему виду клетки (leukos - белый греч.), наблюдаемому в образце крови после центрифугирования.

Нейтрофилы.

Нейтрофильные гранулоциты представляют собой самую большую группу циркулирующих лейкоцитов. Термин «нейтрофильный» описывает внешний вид цитоплазматических гранул при окрашивании по Райту-Гимзе. Вместе с эозинофилами и базофилами нейтрофилы относятся к классу гранулоцитов. В связи с наличием характерного многодолевого (сегментированного) ядра нейтрофил называют также полиморфно-ядерным лейкоцитом (ПМЯЛ), Гранулоциты имеют размеры 9-15 мкм, превышающие таковые эритроцитов. В протоплазме у всех гранулоцитов выявляется зернистость: ауэрофильная и специальная. В ауэрофильных гранулах содержится в основном кислая фосфатаза, в специальных - щелочная фосфатаза. Основной функцией гранулоцитов является фагоцитоз.

Фагоцитарная активность нейтрофилов наиболее выражена у молодых лиц, к старости людей она снижается. Кроме фагоцитоза, гранулоциты при воспалении проявляют секреторную активность, выделяю ряд антибактериальных агентов: пероксидазы, бактерицидные лизосомные катионные белки и другие вещества. Эти высокоспециализированные клетки мигрируют в очаги инфекции, где они распознают, захватывают и уничтожают бактерии. Осуществление этой функции возможно благодаря наличию у нейтрофилов способности к хемотаксису, адгезии, передвижению и фагоцитозу. У них имеется метаболический аппарат для продуцирования токсических веществ и ферментов, разрушающих микроорганизмы.

Гранулоциты живут 1-6 дней, в среднем 6-9 дней, при этом время пребывания их в костном мозге составляет 2-6 дней. С кровью они циркулируют от 60-90 мин. до 24 часов, иногда до 2 суток. Небольшая часть гранулоцитов разрушается в крови, большая часть поступает в ткани и завершает свое физиологическое существование. Гранулоциты разрушаются макрофагами легких, селезенки, печени. Некоторая часть гранулоцитов выводится из организма с секретами и экскретами, мокротой, слюной, желчью, мочой, калом.

Эозинофилы.

Эозинофилы имеют двухдольчатое ядро и цитоплазму, заполненную отчетливо видимыми гранулами, приобретающими красный цвет после окрашивания по Райту-Гимзе. Основные (положительно заряженные) белки этих гранул окрашиваются в красный цвет из-за их высокого сродства к эозину. Хотя эозинофилы проходят те же стадии созревания, что и нейтрофилы, однако по причине своей малочисленности предшественники эозинофилов в костном мозге выявляются реже (за исключением некоторых патологических состояний: глисты, аллергия).

Базофилы.

Базофилы - самая малочисленная группа циркулирующих гранулоцитов, составляющая менее 1% лейкоцитов. В крупных цитоплазматических гранулах базофилов содержатся сульфатированные или карбоксилизированные кислые белки, такие как гепарин, приобретающие синий цвет при окрашивании по Райту-Гимзе. Базофилы опосредуют аллергические реакции, особенно те, которые базируются на IgE-зависимых механизмах. Они экспрессируют IgE-рецепторы и при соответствующей стимуляции освобождают гистамин в ответ на воздействие IgE и антигена.

Моноциты.

Моноциты циркулируют в периферической крови в виде крупных клеток с цитоплазмой синего / серого цвета и почкообразным или складчатым ядром, содержащим нежно-сетчатый хроматин. Моноциты являются производным КОЭ-ГМ (общего предшественника для гранулоцитов и моноцитов) и КОЭ-М (предшественника только моноцитарного ростка). Моноциты проводят в кровотоке всего около 20 часов, а затем попадают в периферические ткани, где трансформируются в макрофаги ретикулоэндотелиальной системы (РЭС). Эти тканевые макрофаги, или гистиоциты, представляют собой крупные клетки с эксцентрично расположены ядром и вакуолизированной цитоплазмой, содержащей многочисленные включения.

Моноциты и макрофаги - долгоживущие клетки, функциональные особенности которых во многом схожи с таковыми у гранулоцитов. Они более эффективно захватывают и поглощают микробактерии, грибки и макромолекулы; менее значима их роль в фагоцитозе пиогенных бактерий. В селезенке макрофаги ответственны за утилизацию сенсибилизированных и стареющих эритроцитов. Макрофаги играют важную роль в процессинге и представлении антигенов лимфоцитам в ходе клеточных и гуморальных иммунных реакций. Продуцирование ими цитокинов и интерлейкинов, интерферонов и компонентов комплемента способствует координации в интегрированном иммунном ответе.

В норме моноциты составляют от 1 до 10% циркулирующих лейкоцитов. Когда количество моноцитов превышает 100/мкл, можно говорить о моноцитозе, который наблюдается у пациентов с хроническими инфекциями (туберкулез, хронический эндокардит) или воспалительными процессами (аутоиммунные заболевания, воспалительные заболевания кишечника).

Лимфоциты.

Значительную популяцию лейкоцитов составляют лимфоциты. По структуре их условно делят на малые (5-9 мкм), средние (10 мкм) и большие (11-13 мкм). Лимфоцит в настоящее время рассматривается как главная клетка иммунной системы. Это небольшие мононуклеарные клетки, координирующие и осуществляющие иммунный ответ за счет продуцирования воспалительных цитокинов и антигенспецифических связывающих рецепторов.

Лимфоциты подразделяются на две основные категории: В-клетки и Т-клетки - и несколько менее многочисленных классов, например, естественные («натуральные», нормальные) клетки-киллеры. Подгруппы лимфоцитов отличаются по месту их образования и эффекторным молекулам, которые они экспрессируют, но обладают общей особенностью - способностью опосредовать высокоспецифический антигенный ответ. Лимфоциты способны передвигаться, внедряться в другие клеточные элементы. Небольшая часть лимфоцитов обладает фагоцитарной активностью. Основной же функцией лимфоцита является участие в иммунных реакциях. Например, Т-лимфоциты - активные участники реакции отторжения, реакции «трансплантант против хозяина», В-лимфоциты продуцируют антитела, обусловливающие гуморальный иммунный ответ.

Лимфоциты могут сохранять длительное время иммунологическую память. Под воздействием ряда иммунных и химических (мутогены) факторов способны пролиферировать.

Зарождение лимфоцитов у взрослого человека происходит в основном в костном мозге и зобной железе.

Длительность жизни лимфоцитов разная: у короткоживущих (очевидно, которые участвуют в иммунных реакциях) - 3-4 дня, у долгоживущих 100-200 дней и даже 580 дней. Нахождение же их в циркулирующей крови не превышает 40 минут. Общее количество в циркулирующей крови составляет у взрослого человека 7,5х10.9 лимфоцитов, а в организме с учетом резерва данных клеток в костном мозге, селезенке, лимфоузлах, тимусе, миндалинах и пейеровых бляшках - 6,0х10.12.

Старые лимфоциты погибают в циркулирующей крови и элиминируются ретикуло-макрофагальными элементами капилляров.

В-лимфоциты.

В-лимфоциты осуществляют экспрессию уникальных антигенных рецепторов - иммуноглобулинов - и запрограммированы на продукцию их в большом количестве в ответ на антигенную стимуляцию. В-клетки образуются из стволовых клеток костного мозга. Термин В-клетки происходит от латинского названия фабрициевой сумки (bursa Fabricius) - органа, необходимого для созревания В-клеток у птиц. Аналогичного органа у человека нет; созревание В-клеток происходит в основном в костном мозге.

Иммунная система содержит большую популяцию отдельных клонов В-лимфоцитов. Каждый клон экспрессирует уникальный антигенный рецептор, который в основном идентичен иммуноглобулиновой молекуле, которую он производит. Эти молекулы отличаются друг от друга и связываются только с ограниченным числом антигенов.

Зрелые В-лимфоциты с характерными поверхностными антигенами - СD19 и СD20 - находятся в основном в зародышевых центрах коры лимфатических узлов и в белой пульпе селезенки. В-клетки составляют менее 20% циркулирующих лимфоцитов.

Т-лимфоциты.

Образовавшись из стволовых клеток костного мозга, Т-клетки обязательно проходят стадию развития в тимусе (вилочковая железа), в результате чего генерируются зрелые, функционально полноценные Т-клетки.

Согласно унитарной теории, все форменные элементы крови происходят из одной полипотентной недифференцированной (стволовой) клетки. Она не имеет морфологических отличий от малого лимфоцита.

Говоря от форменных элементах крови, надо отметить, что они после созревания в костном мозге не выходят сразу в сосудистое русло. Некоторое время клетки крови остаются в специальных депо в костном мозге и селезенке. Этот резерв дополнительной крови является одним из факторов регуляции постоянного состава крови. Попадая в циркулирующий поток, каждая кровяная клетка функционирует определенное время, постепенно стареет и элиминируется из сосудистого русла. На смену старым и элиминированным клеткам в циркулирующую кровь в процессе физиологической регенерации поступают из гемопоэтической ткани молодые форменные элементы. Данный процесс является главным механизмом поддержания постоянства состава крови и существенным фактором обеспечения гомеостаза в организме.

Большую часть крови составляет плазма. Она имеет сложный многокомпонентный состав. Основой плазмы является вода (90%), в которой растворены разнообразные белки (7-8%), другие органические соединения - глюкоза, ферменты, витамины, кислоты, липоиды (1,1%) и минеральные вещества (0,9%).

Белковые компоненты плазмы обеспечивают совместно с тромбоцитами гемостатическую функцию крови, участвуют в пластических процессах в тканях организма, определяют гуморальный иммунитет, дезинтоксикационную и транспортную функцию крови. В плазме электрофоретическим способом определяют концентрацию общего белка (в норме 70-80 г./л), альбумина (40-45%) и глобулинов (55-60%). Альбумины образуются в печени, представляют собой низкомолекулярный (м.м. 69000) белок. Одна треть его общего количества (200-300 г.) в организме взрослого человека находится в циркулирующей крови, а две трети - вне сосудистого русла. Между этими бассейнами происходит беспрерывный обмен альбумина. Он выполняет несколько функций: поддерживает коллоидно-осмотическое давление в крови и тканях (на его долю приходится 80% величины этого показателя), от чего зависит транскапиллярный обмен жидкости, тургор тканей и объем жидкости во внесосудистом и сосудистом пространствах. Легко соединяясь с органическими и неорганическими веществами, гормонами, лекарственными средствами, альбумин доставляет их с током крови в ткани и одновременно выводит некоторые продукты метаболизма в сосудистое русло к печени, почкам, легким, желудочно-кишечному тракту, способствуя дезинтоксикации организма. Является одним из важных компонентов буферной системы плазмы, регулирующий кислотно-щелочное состояние крови. Участвует в питании тканей как легкоусвояемый белок.

Следующую группу белков составляют глобулины, имеющие высокую (105.00-900.000) молекулярную массу. На их долю приходится 15-18% величины поддержания коллоидно-осмотического давления крови. Главная их функция - обеспечение гуморального иммунитета.

При использовании иммунологического метода белки плазмы разделяют на 3 класса - А, М, G. Антитела против подавляющего числа возбудителей инфекций содержатся в классе G.

Среди гемостатических белков плазмы виднейшее место отводится факторам VIII и IX свертывающей системы крови, которые в настоящее время получены и в чистом виде.

В плазме имеется несколько гуморальных систем: комплементарная (компоненты комплемента участвуют в связывании антигенов с антителами), свертывающая и противосветрывающая системы, оксидантная и антиоксидантная, каллекреиновая, пропердиновая, неспецифических факторов защиты, гуморальных факторов иммунитета и другие. Плазма содержит различные белковые комплексы (гликопротеины, металлопротеины, липопротеины и др.), гормоны, другие биологически активные вещества, что позволяет получать из нее ценнейшие лечебные препараты.

Физиологическая роль ряда ингридиентов плазмы изучена еще недостаточно и нуждается в дальнейших исследованиях.

кровь тромбоцит иммунитет возрастной

1.2 Органы кроветворения и кроверазрушения

Общей особенностью гистологического строения кроветворных органов является наличие в их составе паренхимы ретикулярной (в случае тимуса - ретикулоэпителиальной) соединительной ткани, выполняющей ряд специальных функций: 1) трофика собственно кроветворной ткани, 2) разграничение групп созревающих форменных элементов, относящихся к различным линиям дифференцировки, 3) являются «химическими маяками» для редуцирующих клеток крови (лимфоцитов и др.).

К органам кроветворения относится красный костный мозг, лимфатические узлы, селезенка, тимус, а к органам кроверазрушения - печень, костный мозг, селезенка.

Красный костный мозг

особенности строения: сотообразная структура (за счет обилия жировых клеток)

функции: кроветворная (все типы и ростки кроветворения), иммунная (место образования предшественников В- и Т-лимфоцитов, дифференцировка и дозревание Т-лимфоцитов происходит в тимусе). В нем же происходит и разрушение клеток (эритроцитов), реутилизация железа, синтез Hb.

Селезенка.

локализация: в левом подреберье, по ходу кровеносных сосудов

особенности строения: самый крупный периферический кроветворный орган; покрыт брюшиной и капсулой из соединительной ткани с высоким содержанием гладких миоцитов (придают органу способность к сокращению); от капсулы вглубь органа отходят трабекулы, анастомозирующие между собой; в паренхиме различают белую и красную пульпу: первая представлена множеством лимфоидных фолликулов (узелков), вторая - кровеносными сосудами, ретикулярной тканью и лежащими в узлах последней селезеночными тяжами - особыми клеточными ассоциатами, в состав которых входят эритроциты, тромбоциты, лейкоциты, макрофаги, плазмоциты и др.; считается, что именно в селезеночных тяжах происходит разрушение старых форменных элементов крови, в первую очередь, эритроцитов и кровяных пластинок;

функции: кроветворная (образование В-лимфоцитов), защитная (фагоцитоз, участие в иммунных реакциях), депонирующая (оперативное депо крови, накопление тромбоцитов), разрушение старых и поврежденных эритроцитов, лейкоцитов, тромбоцитов.

Тимус (вилочковая железа)

локализация: за грудиной

возрастная динамика: наибольшего развития достигает в детском возрасте; после полового созревания претерпевает постепенную инволюцию; к старости почти полностью замещается жировой тканью (поскольку значительная часть Т-лимфоцитов представлена долгоживущими клетками, способными при встрече с антигеном к избирательной пролифераии, возрастная атрофия тимуса не приводит к катастрофическому снижению иммунитета)

особенности строения: покрыт соединительнотканной капсулой, отходящие от нее перегородки делят орган на дольки; в каждой дольке различают корковое и мозговое вещество; паренхима долек образована предшественниками Т-лимфоцитов (мигрировавшими в тимус из красного костного мозга), Т-лимфоцитами на различных стадиях дифференцировки и ретикулоэпителиальной тканью; в мозговом веществе располагаются слоистые тимусные тельца, предположительно, выполняющие эндокринную функцию

функции: а) кроветворная (место образования первых лимфоцитов у зародыша), б) иммунная, в) эндокринная (секретирует ряд гормонов и гормоноподобных веществ, стимулирующих размножение и дифференцировку Т - лимфоцитов и регулирующих определенные звенья иммунного ответа).

Лимфатический узел

локализация: по ходу лимфатических сосудов

особенности строения: орган бобовидной формы, с выпуклой стороны к лимфатическому узлу подходят несколько приносящих лимфатических сосудов, на противоположной стороне находятся ворота, через которые выходит выносящий лимфатический сосуд и вены и входят артерия и нервы; покрыт соединительнотканной капсулой, от которой вглубь органа отходят трабекулы; в паренхиме различают корковое и мозговое вещество, первое образовано сферическими по форме лимфоидными фолликулами (узелками, представляющими собой плотные скопления лимфоцитов), второе - мякотными шнурами - ветвящимися и анастомозирующими тяжами, состоящими из множества лимфоцитов; тканевый состав паренхимы: кроветворная ткань (В-лимфоциты, плазмоциты, макрофаги и др.) и ретикулярная ткань; пространства, по которым лимфа движется в пределах узла, называются синусами

функции: кроветворная (образование В-лимфоцитов), защитная (фильтрация лимфы, фагоцитоз, участие в иммунном ответе - в лимфатических узлах происходит превращение В-лимфоцитов в плазмоциты - продуценты антител)

Миндалина.

локализация: в зависимости от топографии различают глоточные, гортанные, трубные, язычные и небные миндалины

особенности строения: миндалина относится к так называемым лимфо-эпителиальным органам и представляет собой скопление лимфоидных фолликулов (узелков) вокруг пальцеобразного (или щелеобразного) врастания эпителия в подлежащую соединительную ткань; имеет собственную капсулу

функции: кроветворная (образование лимфоцитов), защитная (фагоцитоз, местный иммунитет)

1.3 Нейрогуморальная регуляция

Нейрогуморальная регуляция - форма регуляции физиологических процессов в организме, осуществляемая центральной нервной системой и биологически активными веществами жидких сред организма (крови, лимфы и тканевой жидкости). Играет ведущую роль в поддержании гомеостаза, т.е. постоянства внутренней среды организма, и приспособлении организма к изменяющимся условиям существования.

Нейрогуморальная регуляция возникла в процессе эволюции животных в результате объединения двух форм регуляции жизнедеятельности организма - более древней гуморальной (с ее помощью осуществлялась связь между отдельными клетками или органами за счет веществ, выделяющихся из них в процессе обмена веществ) и нервной (взявшей на себя контроль за деятельностью гуморальной системы регуляции). В процессах Н. р. помимо непосредственных передатчиков нервного возбуждения, т.е. медиаторов, принимают участие тканевые гормоны, гипоталамические нейрогормоны, регуляторные пептиды и другие биологически активные вещества. С током крови они разносятся по всему организму, но оказывают воздействие лишь на результирующие органы (органы-мишени), вступая во взаимодействие с рецептором (клеткой-мишенью). Под их влиянием происходит возбуждение адрено-, холино-, гистамин- и серотонинреактивных структур организма. В частности, нейросекреторные клетки гипоталамуса являются местом трансформации нервных стимулов в гуморальные, а гуморальных - в нервные. В определенных условиях биологически активные вещества составляют звено рефлекторной дуги, т.е. передают информацию в центральную нервную систему, где она перерабатывается, а затем возвращается в виде потока нервных импульсов в исполнительные органы (эффекторы).

Наличие гистогематических барьеров обусловливает избирательное проникновение гормонов, медиаторов и других биологически активных веществ из крови только в строго определенные участки мозга. Однако при нарушении проницаемости барьера биологически активные вещества могут проникать в те отделы мозга, которые обычно для этих веществ закрыты, что может привести к развитию необычных состояний, вплоть до патологических, затрагивающих как периферические, так и центральные отделы нервной системы. Нарушения механизмов Н. р. могут приводить также к рассогласованию тех или иных параметров внутренней среды организма и как следствие к развитию различных патологических состояний.

2. Возрастные особенности системы крови

В конце ХIX века выдающимся французским физиологом Клодом Бернаром было сформулировано положение о постоянстве внутренней среды организма (гомеостазе), как необходимом условии поддержания жизнедеятельности организма. Это свойство совершенствовалось в процессе эволюции, когда формировались механизмы, его поддерживающие, и теплокровные животные в эволюции представили высочайший уровень развития этой функции.

В течение онтогенеза в каждый возрастной период кровь имеет свои характерные особенности. Они определяются уровнем развития морфологических и функциональных структур органов системы крови, а также нейрогуморальных механизмов регуляции их деятельности.

2.1 Общие свойства крови в онтогенезе

Общее количество крови по отношению к весу тела новорожденного составляет 15%, у детей одного года - 11%, а у взрослых - 7-8%. При этом у мальчиков несколько больше крови, чем у девочек. Однако в покое в сосудистом русле циркулирует лишь 40-45% крови, остальная часть находится в депо: капиллярах печени, селезенки и подкожной клетчатки - и включается в кровоток при повышении температуры тела, мышечной работе, при кровопотере и т.п.

Удельный вес крови новорожденных несколько выше, чем у детей более старших возрастов, и составляет соответственно - 1,06-1,08. Установившаяся в первые месяцы плотность крови (1,052-1,063) сохраняется до конца жизни.

Вязкость крови у новорожденных в 2 раза больше, чем у взрослых и составляет 10,0-14,8 усл. ед. К концу первого месяца эта величина снижается и достигает обычно средних цифр - 4,6 усл. ед. (по отношению к воде). Величины вязкости крови у лиц пожилого возраста не выходят за пределы нормы (4,5).

2.2 Биохимические свойства крови

У человека химический состав крови отличается значительным постоянством. Наибольшие отклонения, если за норму принять содержание веществ в крови взрослых людей, можно отметить в период новорожденности и в старческом возрасте.

Содержание общего белка в сыворотке крови здоровых новорожденных составляет 5,68+-0,04 г.%. С возрастом это количество увеличивается, особенно интенсивно нарастая в первые три года. В 3-4 года эти величины практически достигают уровня взрослых (6,83+-0,19 г.%). Следует обратить внимание на более широкие пределы индивидуального колебания уровня белка у детей раннего возраста (от 4,3 до 8,3 г%), по сравнению со взрослыми людьми, у которых эти величины составили 6,2-8,2 г%. Более низкий уровень белка в плазме крови у детей первых месяцев жизни объясняется недостаточной функцией белковообразовательных систем организма.

В течение онтогенеза меняется и соотношение между альбуминами и различными фракциями глобулинов в плазме крови. В первые месяцы жизни в крови снижено содержание альбуминов (3,7 г%), к 6 годам эта величина возрастает до 4,1 г%, а к 3 годам составила 4,5 г%, что близко к норме взрослого человека. Количество гамма глобулинов, высокое в первые дни после рождения за счет материнской плазмы, постепенно снижается, а затем к 3 годам достигает нормы взрослого человека (17,39 г.%). Содержание альфа1-глобулинов у детей до 1 года повышено, к 3 годам уровень их в крови нормализуется. Несколько по иному протекает установление концентрации альфа2-глобулинов. В первые полгода уровень их повышен, к 7 годам он постепенно снижается, а затем достигает уровня, характерного для взрослых. Содержание бета-глобулинов так же достигает взрослого уровня после 7 лет.

Таким образом, белковый состав крови в течение онтогенеза претерпевает ряд изменений: от момента рождения до зрелости происходит увеличение содержания белков в крови, устанавливаются определенные соотношения в белковых фракциях. Функциональные возможности синтезирующих белки плазмы органов, прежде всего печени, относительно низки в момент рождения, постепенно усиливаются, что приводит к нормализации состава крови.

Рисунок 1

Количество холестерина (рис. 1) в крови новорожденных относительно невысоко, и увеличивается с возрастом. При этом отмечается, что при преобладании в пище углеводов уровень холестерина в крови повышается, а при преобладании белков - понижается. В пожилом и старческом возрастах уровень холестерина увеличивается.

Уровень молочной кислоты у грудного ребенка может на 30% превышать таковой у взрослых, что связано с повышением уровня гликолиза у детей. С возрастом содержание молочной кислоты в крови ребенка постепенно падает. Так, уровень молочной кислоты у ребенка в первые 3 месяца жизни составляет 18,7 мг%, к концу 1 года - 13,8 мг%, а у взрослых - 10,2 мг%.

2.3 Форменные элементы крови в онтогенезе

Эритропоэз. Количество эритроцитов у плода постепенно увеличивается, отмечается уменьшение их диаметра, объема и количества ядросодержащих клеток. У новорожденных интенсивность эритропоэза примерно в 5 раз выше, чем у взрослых. Количество эритроцитов у них в 1-й день повышено по сравнению со взрослыми и достигает 6-10 х1012 /л. На 2-3 день количество их снижается в результате их разрушения (физиологическая желтуха) и в течение 1-го месяца их содержание снижается до 4,7х1012 /л. При этом выявляются анизоцитоз, пойкилоцитоз и полихроматофилия, а иногда встречаются и ядросодержащие эритроциты. Для детей грудного возраста на протяжении 1-го полугодия характерно дальнейшее уменьшение количества эритроцитов, после чего происходит нарастание их количества до 4,2х1012 /л. Начиная с 4-х лет отмечается уменьшение миелоидной ткани и в период полового созревания гемопоэз сохраняется в красном костном мозге губчатого вещества тел позвонков, ребер, грудины, костей голени и бедренных костей. При старении отмечается уменьшение общей массы красного костного мозга и его пролиферативной активности. Прослеживается тенденция к уменьшению количества эритроцитов и гемоглобина.

Гемоглобин. Функцию переносчика кислорода у эмбриона до 9-12 недель выполняет эмбриональный (примитивный) гемоглобин (НbP), который замещается фетальным гемоглобином (HbF) к 3-му месяцу внутриутробного развития. На 4-м месяце в крови плода появляется гемоглобин взрослых (HbA) и количество его до 8-ми месяцев не превышает 10%. У новорожденных еще сохраняется до 70% HbF и уже содержится 30% HbA. Количество Hb повышено (170 - 246г/л), но, начиная с 1-х суток, его содержание постепенно снижается. У лиц пожилого и старческого возраста содержание Нb несколько снижается и колеблется в пределах нижней границы нормы зрелого возраста. СОЭ у новорожденных ниже, чем у взрослых и равняется 1-2 мм/ч.

Лейкоциты. У новорожденных сразу после рождения количество лейкоцитов повышено и достигает 15 х 1012/л (лейкоцитоз новорожденных). Через 6 часов их количество повышается до 20 х1012/л, через 24 ч - 28 х1012/л, 48 ч - 19 х1012/л. Индекс регенерации повышен и отмечается сдвиг лейкоцитарной формулы влево. Наивысший подъем количества лейкоцитов отмечается на 2-е сутки. Затем их количество снижается и предельное падение кривой происходит на 5 сутки, а к 7 суткам количество их приближается к верхней границе нормы взрослых. У детей грудного возраста отмечается сравнительно низкая двигательная и фагоцитарная активность лейкоцитов. Картина белой крови у детей после 1-го года жизни характеризуется постепенным понижением абсолютного количества лейкоцитов, нарастанием относительного числа нейтрофилов при соответствующих понижении количества лимфоцитов. В лейкоцитарной формуле отмечаются 2 «перекреста» изменения лейкоцитов. Первый - в возрасте 3 - 7 дней (снижение процента нейтрофилов и возрастание процента лимфоцитов) и второй - в возрасте 4-6 лет (возрастание процента нейтрофилов и снижение процента лимфоцитов). К старости отмечается лейкопения (лейкопения старости) и эозинопения. Уменьшается функциональный резерв лейкопоэза в экстремальных условиях.

Тромбоциты. Количество тромбоцитов у новорожденных в первые часы после рождения колеблется в пределах 150 - 320 х 109 /л, что в среднем существенно не отличается от содержания их в крови взрослых. Затем следует некоторое снижение их количества (до 164-178х109 /л) к 7-9 дню, после чего к концу 2-й недели их содержание возрастает и остается практически без существенных изменений на уровне взрослых. Для детей 1-х дней жизни характерным является большое количество круглых и юных форм тромбоцитов, количество которых с возрастом уменьшается.

Гемостаз. В крови плода до 16 - 20 недель отсутствуют фибриноген, протромбин и акцелерин, а поэтому она не свертывается. Фибриноген появляется на 4 - 5 месяце внутриутробной жизни, концентрация его при этом составляет 0,6 г/л. В этот период еще низкая активность фибринстабилизирующего фактора, но высокая активность гепарина (почти в 2 раза выше, чем у взрослых). Низкий уровень факторов свертывающей и антисвертывающей систем крови у плода объясняется незрелостью клеточных структур печени, осуществляющих их биосинтез. В крови новорожденных отмечается низкая концентрация ряда факторов (FII, FVII, FIX, FX, FXI, FXIII) свертывающей системы крови, антикоагулянтов и плазминогена, хотя соотношение их концентраций такое же, как и у взрослых. У детей первых дней жизни время свертывания крови снижена, особенно на 2-й день, после чего она постепенно повышается и достигает скорости свертывания крови у взрослых к концу подросткового периода. В периоды детства происходит постепенное повышение содержания прокоагулянтов и антикоагулянтов. При этом характерным является гетерохронность созревания отдельных звеньев (про- и антикоагулянтов) в данный постнатальный период. К 14-16 годам содержание и активность всех факторов, участвующих в свертывании крови и фибринолиза достигают уровня взрослых.

Группы крови. Формирование факторов, определяющих групповую принадлежность в онтогенеге происходит неодновременно. Агглютиногены А и В формируются к 2 - 3 месяцу антенатального периода, а аглютинины альфа и бетта - к моменту или же после рождения, что обусловливает низкую способность эритроцитов к агглютинации, которая достигает ее уровня у взрослых к 10 - 20 годам.

Агглютиногены системы Rh появляются у плода на 2 - 3 месяце, при этом активность Rh-антигена во внутриутробном периоде выше, чем у взрослых.

2.4 Лейкоформула

Количество лейкоцитов у ребенка первых дней жизни больше, чем у взрослых, и в среднем колеблется в пределах 10000-20000 в куб. мм. Затем количество лейкоцитов начинает падать. Как и для эритроцитов, существуют широкие пределы колебания числа лейкоцитов в первые дни постнатальной жизни от 4600 до 28000. Характерным в картине лейкоцитов у детей этого периода является следующее. Нарастание количества лейкоцитов в течение 3 часов жизни (до 19600), что, по-видимому, связано с рассасыванием продуктов распада тканей ребенка, тканевых кровоизлияний, возможных во время родов, через 6 часов - 20000, через 24 - 28000, через 48 - 19000. К 7 суткам число лейкоцитов приближается к верхней границе взрослых и составляет 8000-11000. У детей 10-12 лет число лейкоцитов в периферической крови колеблется в пределах 6-8 тыс., т.е. соответствует количеству лейкоцитов у взрослых.

Также имеет свои возрастные особенности лейкоцитарная формула. Напомним, что под этим понимается соотношение различных форм лейкоцитов в процентах.

Рисунок 2

Лейкоцитарная формула крови ребенка в период новорожденности характеризуется:

) последовательным увеличением числа лимфоцитов от момента рождения к концу периода новорожденности (при этом на 5-е сутки происходит перекрест кривых падения нейтрофилов и подъема лимфоцитов);

) значительным количеством юных форм нейтрофилов;

) большим количеством юных форм, миелоцитов, бластных форм;

) структурной незрелостью и хрупкостью лейкоцитов.

У детей первого года жизни при довольно широких пределах колебаний общего числа лейкоцитов наблюдаются и широкие пределы вариаций процентного содержания отдельных форм (рис. 2).

Заключение

Система крови является жизненно важной для организма человека. В нее входят костный мозг, селезенка, лимфатические узлы, печень, циркулирующая и депонированная кровь. Это весьма динамичная система, четко реагирующая на экзогенные и эндогенные воздействия на организм человека и отвечающая своеобразными реакциями на возникающие в нем изменения.

В течение онтогенеза в каждый возрастной период кровь имеет свои характерные особенности. Они определяются уровнем развития морфологических и функциональных структур органов системы крови, а также нейрогуморальных механизмов регуляции их деятельности.

Система крови тонко реагирует на физические и химические воздействия со стороны внешней и внутренней сред организма, поэтому исследования крови дают основание для важных общебиологических выводов, позволяющих грамотно и наиболее точно провести диагностику и на основе этого формулировать заключение о наличии и виде типовой формы патологии системы крови, о возможных ее причинах, механизмах развития и исходе.

Литература

1.Анатомия человека. /Под ред. Сапина М.Р. В 2-х томах. - М.: Медицина, 1997.

.Атлас клеток крови и костного мозга (под ред. Г.И. Козинца). - М.: «Триада-Х», 1998, - 160 с.

2.Возрастные особенности системы крови / А.А. Маркосян, Х.Д. Ломазова. - Москва, 2002 // Хрестоматия по возрастной физиологии: учебное пособие: для студентов высших учебных заведений, обучающихся по специальностям - «Дошкольная педагогика и психология», «Педагогика и методика дошкольного образования» / Сост. М.М. Безруких, В.Д. Сонькин, Д.А. Фарбер. - Москва: Академия, 2002. - С. 81-102.

.Ермолаев Ю.А. Возрастная физиология. Учебное пособие для студентов педагогических вузов. - М.: Высшая школа, 1985, 384 с.

5.Курепина М.М. Анатомия человека. - М.: Просвещение, 1979.

.Начала физиологии: Учебник для вузов / Под редакцией акад. А.Д. Ноздрачева. - СПб.: Издательство «Лань», 2001. - 1088 с.

.Патологическая физиология / Под ред. В.В. Новицкого, Е.Д. Гольдберга - Томск, 2001 - с 136-141

8.Руководство по гематологии в 3 т, т. 1. / Под ред. Воробьева А.И. Изд. «Ньюдиамед». М., 2002, 280 с

.Руководство по гематологии в 3 т, т. 2. / Под ред. Воробьева А.И. Изд. «Ньюдиамед». М., 2003, 270 с

.Шиффман Фред. Дж., Патофизиология крови, С-Пб., 2000

Похожие работы на - Морфология системы крови и ее возрастные особенности

Физиологические особенности системы крови в разные возрастные периоды касаются физико-химических свойств плазмы, форменных элементов (эритроцитов, лейкоцитов и тромбоцитов), системы свертывания крови, кроветворения и определяются уровнем развития морфологических и ферментативных структур органов системы крови, а также нервногуморальных механизмов регуляции их деятельности. Кроме того, физиологические особенности системы крови новорожденных определяются недостатком кислорода во внутриутробном периоде, влиянием гормонов крови матери, травматизацией при родах, прекращением плацентарного кровообращения и переходом в новые условия существования.

ВОЗРАСТНЫЕ ОСОБЕННОСТИ СОСТАВА, КОЛИЧЕСТВА И ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ КРОВИ

Количество крови. Количество крови у новорожденного находится в зависимости от первоначальной массы и длины тела, от времени перевязки пуповины. У новорожденных и грудных детей относительная масса крови больше, чем у взрослых (до 15% массы тела), и только к 6-9 годам происходит постепенное снижение ее количества до дефинитивного уровня (7-8%). В период полового созревания наблюдается некоторое увеличение количества крови. Эти возрастные изменения количества крови обусловлены уровнем метаболических процессов в организме и необходимостью кислородного обеспечения органов и тканей. Около 60-80% общего объема крови находится в венах (в раннем возрасте меньше), остальная часть - в полостях сердца, артериях и капиллярах. Объем циркулирующей крови (в мл на 1 кг массы тела) составляет: у новорожденных -110- 195, у грудных детей - 75-110, у детей первого детства - 51-90, у подростков - 50-92, у взрослых - 50. У мальчиков количество крови несколько больше, чем у девочек. В зависимости от индивиду альных особенностей количество крови в организме может колебаться в довольно широких пределах.

Физико-химические свойства крови. Вязкость крови , обусловленная наличием в ней белков и эритроцитов, в первые дни после рождения велика, из-за увеличенного количества эритроцитов. На 5-6-й день она понижается, достигая к концу 1 -го месяца жизни той вязкости, которая устанавливается у детей старшего возраста. У школьников вязкость крови после учебной нагрузки обычно становится выше, чем до нее. Длительная, напряженная физическая работа также приводит к увеличению вязкости крови у детей, которое может длиться до 2 сут.

У новорожденных детей pH - кислотность (7,31) и буферные основания крови (43,5 ммоль/л) снижены, т.е. наблюдается ацидоз (сдвиг кислотно-щелочного равновесия в кислую сторону), сначала декомпенсированный, а затем - компенсированный. К концу 1 -й недели эти показатели начинают превышать уровень взрослых (7,44 и 47,3 ммоль/л), и только к 7-8 годам они начинают соответствовать дефинитивным (взрослым) значениям (7,42 и 44,5 ммоль/л).

Количество и состав плазмы. У новорожденных плазма составляет 43-46% от общего объема крови (у взрослого 55-60%). К концу 1-го месяца жизни ребенка процент содержания плазмы достигает уровня взрослого человека и затем, в грудном возрасте и в детстве до 15 лет, повышается до 60-65%. Только по завершению пубертатного периода относительный объем плазмы начинает соответствовать дефинитивному уровню.

Белковый состав. Количество белка в сыворотке крови новорожденных 47-56 г/л. С возрастом количество белка увеличивается, особенно интенсивно нарастает в первые 3-4 года, достигая уровня взрослых (70-80 г/л). Уменьшенное количество белка в плазме крови у детей первых месяцев жизни объясняется недостаточным проявлением функции белковообразовательных систем организма.

С возрастом изменяется и белковый коэффициент крови - соотношение между альбуминами и глобулинами плазмы крови. В момент рождения общее содержание глобулинов у ребенка выше (36%), чем у матери, а содержание альбуминов снижено (61%). Высокое содержание гамма-глобулинов в момент рождения связано с тем, что они про ходят через плацентарный барьер от матери. Количество их в крови постепенно уменьшается нормализуясь к 2-3 годам (13-14%). Содержание альбуминов постепенно повышается, достигая уровня взрослых к 3 годам (63-65%).

В связи с меньшим количеством белков в плазме онкотическое давление плазмы крови снижено. Эти показатели достигают взрослого уровня к 3-4 годам жизни.

Биохимический состав. Количество аминокислот в крови детей первых лет жизни за висит от типа вскармливания, но общее их количество на 30-35% меньше, чем у взрослых. В плазме определяются следующие аминокислоты: серин, глицин, глютаминовая кислота, аргинин, метионин, цистеин и лизин.

Количество мочевины и мочевой кислоты в сыворотке крови детей увеличивается от периода новорожденное™ к 2-14 годам (2,5-

4.5 ммоль/л; 0,14-0,2 ммоль/л и 4,3-7,3 ммоль/л; 0,17-0,41 ммоль/л соответственно).

Гликогена в крови детей больше (120-210 мг/л), чем у взрослых (70-120 мг/л), а содержание глюкозы - ниже. Так, в сыворотке крови ребенка первых дней жизни концентрация глюкозы составляет 1,7-4,2 ммоль/л и достигает уровня взрослых (3,3-5,6 ммоль/л) в 12-14 лет. У детей выражен повышенный гликолиз, поэтому содержание молочной кислоты в крови у них больше на 30%, чем у взрослых. С возрастом содержание молочной кислоты в крови детей постепенно снижается (с 2,0-2,4 у новорожденных до 1,0-1,7 ммоль/л - к 14 годам).

Ферментный состав. В крови плода отсутствует угольная ангидраза. В крови новорожденных ее очень мало и ее активность составляет 4-24% от уровня взрослых. Содержание этого фермента, соответствующее дефинитавному, устанавливается к 5 годам жизни ребенка. В первые недели жизни ребенка активность ферментов амилазы, каталазы, липазы, трансаминазы несколько снижена. Их актавность постепенно возрастает в течение 1-го года жизни. Содержание в крови щелочной фосфатазы повышено в течение всего детства, что связано с формированием и усиленным ростом костей.

Минеральный состав. Подробное описание будет дано в главе «Водно-электролитный обмен» (гл. 13).

В течение онтогенеза в каждый возрастной период кровь имеет свои характерные особенности. Они определяются уровнем развития морфологи­ческих и функциональных структур органов системы крови, а также нейро-гуморальных механизмов регуляции их деятельности.

Общее количество крови по отношению к весу тела новорожденного составляет 15%, у детей одного года - 11%, а у взрослых - 7-8%. При этом у мальчиков несколько больше крови, чем у девочек. Однако в покое в сосуди­стом русле циркулирует лишь 40-45% крови, остальная часть находится в депо: капиллярах печени, селезенки и подкожной клетчатки - и включается в кровоток при повышении температуры тела, мышечной работе, при кровопо­тере и т.п.

Удельный вес крови новорожденных несколько выше, чем у детей более старших возрастов, и составляет соответственно - 1,06 - 1,08. Установившая­ся в первые месяцы плотность крови (1,052 - 1,063) сохраняется до конца жизни.

Вязкость крови у новорожденных в 2 раза больше, чем у взрослых и составляет 10,0-14,8 усл.ед. К концу первого месяца эта величина снижается и достигает обычно средних цифр - 4,6 усл.ед. (по отношению к воде). Ве­личины вязкости крови у лиц пожилого возраста не выходят за пределы нор­мы.

Содержание эритроцитов в куб.мм крови также подвержено возраст­ным изменениям У новорожденного эта величина колеблется от 4,5 млн в куб.мм до 7,5 млн, что, по-видимому, связано с недостаточным снабжением кислородом плода в последние дни эмбрионального периода и во время ро­дов. После родов условия газообмена улучшаются, часть эритроцитов разру­шается. Кровь новорожденных содержит значительное количество незрелых форм эритроцитов, содержащих ядро.

У детей от 1 до 2 лет наблюдаются большие индивидуальные отличия в числе эритроцитов. Подобный широкий размах в индивидуальных данных отмечается также от 5 до 7 и от 12 до 14 лет, что, по-видимому, находится в прямой связи с периодами ускоренного роста.

Одним важных свойств клеточных мембран является их избирательная проницаемость. Этот факт обусловил то, что при помещении эритроцитов в растворы с различной концентрацией солей, наблюдаются серьезные измене­ния в их структуре. При помещении эритроцитов в раствор, осмотическое давление которого ниже, чем плазмы (гипотонический раствор), по законам осмоса вода начинает входить внутрь эритроцита, они набухают и их мем­браны разрываются, происходит гемолиз. У человека гемолиз начинается при помещении его эритроцитов в 0,44-0,48% раствор NaCl. Способность эритро­цитов противостоять гемолизу называется осмотической резистентностью . Она значительно выше у новорожденных и детей грудного возраста, чем у взрослых. Например, максимальная стойкость эритроцитов у грудных детей находится в пределах 0,24-0,32% (взрослых 0,44-0,48%).

В период внутриутробной жизни у плода в первые 6 месяцев преобла­дает фетальный гемоглобин HbF. Существенным является тот факт, что он обладает более высоким сродством к кислороду и может насыщаться на 60 % кислородом при таком напряжении кислорода, когда гемоглобин матери на­сыщается на 30%, то есть при одном и том же напряжении кислорода кровь плода будет содержать больше кислорода, чем материнская кровь. Эти осо­бенности гемоглобина плода обеспечивают возможность транспортировать кислород от крови матери к крови ребенка, удовлетворяя потребности тканей в кислороде.

Для детей периода новорожденности характерно повышенное содержа­ние гемоглобина. Но, начиная с первых суток постнатальной жизни количе­ство гемоглобина постепенно падает, причем это падение не зависит от веса ребенка. Количество Hb у детей первого года значительно снижается к 5 ме­сяцу и остается на низком уровне до конца 1 года, с возрастом количество ге­моглобина увеличивается.

У лиц пожилого и старческого возраста количество гемоглобина несколько снижается, приближаясь к нижней границе нормы, выведенной для зрелого возраста.

Количество лейкоцитов у ребенка первых дней жизни больше, чем у взрослых, и в среднем колеблется в пределах 10 тыс.-20 тыс. в куб. мм. Затем количество лейкоцитов начинает падать. Как и для эритроцитов, существуют широкие пределы колебания числа лейкоцитов в первые дни постнатальной жизни от 4600 до 28 тыс.. Характерным в картине лейкоцитов у детей этого периода является следующее. Нарастание количества лейкоцитов в течение 3 часов жизни (до 19600), что, по-видимому, связано с рассасыванием продук­тов распада тканей ребенка, тканевых кровоизлияний, возможных во время родов, через 6 часов - 20 тыс., через 24 - 28 тыс., через 48 - 19 тыс.. К 7 суткам число лейкоцитов приближается к верхней границе взрослых и составляет 8 тыс.-11 тыс.. У детей 10-12 лет число лейкоцитов в периферической крови ко­леблется в пределах 6-8 тыс., т.е. соответствует количеству лейкоцитов у взрослых.

Также имеет свои возрастные особенности лейкоцитарная формула . Лейкоцитарная формула крови ребенка в период новорожденности характе­ризуется:

1) последовательным увеличением числа лимфоцитов от момента ро­ждения к концу периода новорожденности (при этом на 5-е сутки происходит перекрест кривых падения нейтрофилов и подъема лимфо­цитов);

2) значительным количеством юных форм нейтрофилов;

3) большим количеством юных форм, миелоцитов, бластных форм;

4) структурной незрелостью и хрупкостью лейкоцитов.

У детей первого года жизни при довольно широких пределах колеба­ний общего числа лейкоцитов наблюдаются и широкие пределы вариаций процентного содержания отдельных форм).

Высокое содержание лимфоцитов и малое количество нейтрофилов в первые годы жизни постепенно выравнивается, достигая к 5-6 годам почти одинаковых величин. После этого процент нейтрофилов постепенно растет, а процент лимфоцитов понижается. Малым содержанием нейтрофилов, а так­же недостаточной их зрелостью и фагоцитарной активностью отчасти объяс­няется большая восприимчивость детей младших возрастов к инфекционным заболеваниям.

Говоря о лейкоцитах, мы не можем пройти мимо такой функции орга­низма, как иммунитет .

Как известно, под иммунным процессом понимают ответ организма на определенного рода раздражение, на вторжение чужеродного агента - антиге­на. Защищая организм от вторжения антигенов, кровь вырабатывает особые белковые тела - антитела, которые обезвреживают антигены, вступая с ними в реакцию самого разнообразного характера. При этом активно вырабатыва­ются антитела лимфоциты, при участии и контроле со стороны других им­мунных клеток. В эмбриональном периоде антитела в организме плода не вы­рабатываются, и, несмотря на это, в первые 3 месяца после рождения дети почти полностью невосприимчивы к инфекционным заболеваниям. Это объ­ясняется тем, что плод получает готовые антитела (гамма-глобулины) через плаценту от матери. В грудном периоде часть антител ребенок получает с ма­теринским молоком. Кроме того, невосприимчивость новорожденных детей к некоторым заболеваниям связана с недостаточной зрелостью организма, осо­бенно его нервной системы.

По мере созревания организма, его нервной системы, ребенок посте­пенно приобретает все более стойкие иммунологические свойства. Ко второ­му году жизни вырабатываются уже значительное количество иммунных тел.

Замечено, что у детей, воспитывающихся в коллективах, быстрее фор­мируются иммунные реакции. Это объясняется тем, что в коллективе ребе­нок подвергается скрытой иммунизации: попадания от заболевших детей в организм ребенка малых доз возбудителя не вызывает у него заболевания, но активирует выработку антител. Если это повторяется несколько раз, то при­обретается иммунитет к данному заболеванию.

К 10 годам иммунные свойства организма хорошо выражены и в даль­нейшем они держатся на относительно постоянном уровне и начинают сни­жаться после 40 лет. Немаловажную роль в формировании иммунных реак­ций организма играют профилактические прививки.

Система свертывания крови как одна из физиологических систем орга­низма формируется и созревает в период эмбриогенеза и раннего онтогенеза.

Свертывание крови детей в первые дни постнатальной жизни замедле­но: начало свертывания наступает через 2-3 минуты. С 2 по 7 день свертыва­ние ускоряется и приближается к норме, установленной для взрослых (нача­ло на 1-2 мин и конец на 2-4 мин).

У детей дошкольного периода, подростков и юношей время свертыва­ния при широких индивидуальных колебаниях в среднем выражается одина­ковыми цифрами: начало - 1-2 минута, конец через 3-4 мин.

Наибольшие пределы колебаний времени свертывания крови в предпу­бертатном и пубертатном периодах, очевидно, связано с неустойчивым гор­мональным фоном в этот период жизни.

В возрасте после 50 лет в деятельности системы свертывания крови происходят определенные изменения, а именно - повышение коагуляционных свойств крови. Эти изменения, по-видимому, связаны с изменением обмена веществ и возникающим вследствие этого нарушением в соотношениях белковых фракций (повышение уровня глобулинов) и соответствующими яв­лениями атеросклероза. Кроме того отмечено увеличение концентрации гепа­рина у лиц старше 100 лет, по данным Кишидзе, почти вдвое по сравнению с содержанием его в крови у лиц зрелого возраста. В данном случае повыше­ние уровня гепарина, возможно, является защитной, приспособительной ре­акцией на повышение коагуляционных свойств крови у лиц пожилого и стар­ческого возраста.

Таким образом, для системы свертывания крови человека и животных характерна гетерохронность созревания отдельных звеньев. Только к 14-16 годам у человека содержание и активность всех факторов достигает уровня взрослых.

В конце ХIX века выдающимся французским физиологом Клодом Бернаром было сформулировано положение о постоянстве внутренней среды организма (гомеостазе), как необходимом условии поддержания жизнедеятельности организма. Это свойство совершенствовалось в процессе эволюции, когда формировались механизмы, его поддерживающие, и теплокровные животные в эволюции представили высочайший уровень развития этой функции.

В течение онтогенеза в каждый возрастной период кровь имеет свои характерные особенности. Они определяются уровнем развития морфологических и функциональных структур органов системы крови, а также нейрогуморальных механизмов регуляции их деятельности.

Общие свойства крови в онтогенезе

Общее количество крови по отношению к весу тела новорожденного составляет 15%, у детей одного года - 11%, а у взрослых - 7-8%. При этом у мальчиков несколько больше крови, чем у девочек. Однако в покое в сосудистом русле циркулирует лишь 40-45% крови, остальная часть находится в депо: капиллярах печени, селезенки и подкожной клетчатки - и включается в кровоток при повышении температуры тела, мышечной работе, при кровопотере и т.п.

Удельный вес крови новорожденных несколько выше, чем у детей более старших возрастов, и составляет соответственно - 1,06-1,08. Установившаяся в первые месяцы плотность крови (1,052-1,063) сохраняется до конца жизни.

Вязкость крови у новорожденных в 2 раза больше, чем у взрослых и составляет 10,0-14,8 усл. ед. К концу первого месяца эта величина снижается и достигает обычно средних цифр - 4,6 усл. ед. (по отношению к воде). Величины вязкости крови у лиц пожилого возраста не выходят за пределы нормы (4,5).

Биохимические свойства крови

У человека химический состав крови отличается значительным постоянством. Наибольшие отклонения, если за норму принять содержание веществ в крови взрослых людей, можно отметить в период новорожденности и в старческом возрасте.

Содержание общего белка в сыворотке крови здоровых новорожденных составляет 5,68+-0,04 г.%. С возрастом это количество увеличивается, особенно интенсивно нарастая в первые три года. В 3-4 года эти величины практически достигают уровня взрослых (6,83+-0,19 г.%). Следует обратить внимание на более широкие пределы индивидуального колебания уровня белка у детей раннего возраста (от 4,3 до 8,3 г%), по сравнению со взрослыми людьми, у которых эти величины составили 6,2-8,2 г%. Более низкий уровень белка в плазме крови у детей первых месяцев жизни объясняется недостаточной функцией белковообразовательных систем организма.

В течение онтогенеза меняется и соотношение между альбуминами и различными фракциями глобулинов в плазме крови. В первые месяцы жизни в крови снижено содержание альбуминов (3,7 г%), к 6 годам эта величина возрастает до 4,1 г%, а к 3 годам составила 4,5 г%, что близко к норме взрослого человека. Количество гамма глобулинов, высокое в первые дни после рождения за счет материнской плазмы, постепенно снижается, а затем к 3 годам достигает нормы взрослого человека (17,39 г.%). Содержание альфа1-глобулинов у детей до 1 года повышено, к 3 годам уровень их в крови нормализуется. Несколько по иному протекает установление концентрации альфа2-глобулинов. В первые полгода уровень их повышен, к 7 годам он постепенно снижается, а затем достигает уровня, характерного для взрослых. Содержание бета-глобулинов так же достигает взрослого уровня после 7 лет.

Таким образом, белковый состав крови в течение онтогенеза претерпевает ряд изменений: от момента рождения до зрелости происходит увеличение содержания белков в крови, устанавливаются определенные соотношения в белковых фракциях. Функциональные возможности синтезирующих белки плазмы органов, прежде всего печени, относительно низки в момент рождения, постепенно усиливаются, что приводит к нормализации состава крови.

Рисунок 1

Количество холестерина (рис. 1) в крови новорожденных относительно невысоко, и увеличивается с возрастом. При этом отмечается, что при преобладании в пище углеводов уровень холестерина в крови повышается, а при преобладании белков - понижается. В пожилом и старческом возрастах уровень холестерина увеличивается.

Уровень молочной кислоты у грудного ребенка может на 30% превышать таковой у взрослых, что связано с повышением уровня гликолиза у детей. С возрастом содержание молочной кислоты в крови ребенка постепенно падает. Так, уровень молочной кислоты у ребенка в первые 3 месяца жизни составляет 18,7 мг%, к концу 1 года - 13,8 мг%, а у взрослых - 10,2 мг%.

Количество крови в организме человека меняется с возрастом. У детей крови относительно массы тела больше, чем у взрослых. У новорожденных кровь составляет 14,7% массы, у детей одного года - 10,9%, у детей 14 лет - 7%. Это связано с более интенсивным протеканием обмена веществ в детском организме.

Общее количество крови у новорожденных в среднем составляет 450 -600 мл, у детей до года -1,0 - 1,1 л., у детей 14 лет - 3,0 -3,5 л., у взрослых людей массой 60 -70 килограмм общее количество крови 5,0 -5,5 литров.

У здоровых людей соотношение между плазмой и форменными элементами крови колеблется незначительно (55% плазмы и 45% форменных элементов). У детей раннего возраста процентное содержание форменных элементов несколько выше.

Количество форменных элементов крови также имеет свои возрастные особенности. Так, количество эритроцитов (красные кровяные клетки) у детей новорожденных составляет 4,3 - 7,6 млн. на 1 мм 3 , у детей к 6 месяцам количество эритроцитов снижается до 3,5 - 4.8 млн. на 1мм 3 , у детей до года - до 3,6 - 4,9 млн. на 1 мм и в 13 - 15 лет достигает уровня взрослого человека. Надо подчеркнуть, что содержание форменных элементов крови имеет и половые особенности, например, количество эритроцитов у мужчин составляет 4,0 - 5,1 млн. на 1мм 3 , а у женщин - 3,7 - 4,7 млн. на 1мм 3 .

Осуществление эритроцитами дыхательной функции связанно с наличием в них гемоглобина, являющегося переносчиком кислорода. Содержание гемоглобина в крови измеряется либо в абсолютных величинах, либо в процентах. За 100% принято наличие 16,7 грамм гемоглобина в 100 мл. крови. У взрослого человека обычно в крови содержится 60 - 80% гемоглобина. Причём содержание гемоглобина в крови мужчин составляет 80 -100%, а у женщин - 70 - 80%. Содержание гемоглобина зависит от количества эритроцитов в крови, питания, пребывания на свежем воздухе и других причин.

Содержание гемоглобина в крови так же меняется с возрастом. В крови новорожденных количество гемоглобина может варьировать от 110% до 140%. К 5 -6 дню жизни этот показатель снижается. К 6 месяцам количество гемоглобина составляет 70 - 80%. Затем к 3 -4 годам количество гемоглобина несколько увеличивается 70 -85%, в 6 -7 лет отмечается замедление в нарастании содержания гемоглобина, с 8 - летнего возраста вновь нарастает количество гемоглобина и к 13 -15 годам составляет 70 -90%, то есть достигает показателя взрослого человека. Снижение числа эритроцитов ниже 3 млн. и количества гемоглобина ниже 60% свидетельствует о наличии анемического состояния.

Малокровие - резкое снижение гемоглобина крови и уменьшение количества эритроцитов. Оно сопровождается головокружением, обмороками, отрицательно сказывается на работоспособности, успеваемости учащихся. Первейшей профилактической мерой против малокровия являются правильная организация режима дня, рациональное питание, богатое минеральными солями и витаминами, активный отдых на свежем воздухе.

Одним из важных диагностических показателей, свидетельствующих о наличии воспалительных процессов и других патологических состояний, является скорость оседания эритроцитов. У мужчин она составляет 1 -10 мм/ч, у женщин 2 -15 мм/ч. С возрастом этот показатель изменяется. У новорожденных скорость оседания эритроцитов низкая от 2- 4 мм/ч. У детей до трёх лет величина СОЭ составляет от 4 -12 мм/ч. В возрасте от 7 до 12 лет величина СОЭ не превышает 12 мм/ч.

Другим классом форменных элементов крови являются лейкоциты - белые кровяные клетки. Важнейшей функцией лейкоцитов является защита от попадающих в кровь микроорганизмов и токсинов.

Количество лейкоцитов и их соотношение изменяются с возрастом. Так, в крови взрослого человека содержится 4000 -9000 лейкоцитов в 1 мкл. У новорожденного лейкоцитов значительно больше, чем у взрослого, до 20000 в 1 мм 3 крови. В первые сутки жизни число лейкоцитов возрастает, происходит рассасывание продуктов распада тканей ребёнка, тканевых кровоизлияний, возможных во время родов, до 30000 в 1 мм 3 крови.

Начиная со вторых суток число лейкоцитов снижается и к 12 дню достигает 10000 - 12000. Такое количество лейкоцитов сохраняется у детей первого года жизни, после чего оно снижается и к 13 - 15 годам достигает величин взрослого человека. Кроме того было выявлено, что чем меньше возраст ребёнка, тем больше незрелых форм лейкоцитов содержит его кровь.

Лейкоцитарная формула в первые годы жизни ребёнка характеризуется повышенным содержанием лимфоцитов и пониженным числом нейтрофилов. К 5 -6 годам количество этих форменных элементов выравнивается, после этого процент нейтрофилов растёт, а процент лимфоцитов понижается. Малым содержанием нейтрофилов, а также недостаточной их зрелостью объясняется большая восприимчивость детей младших возрастов к инфекционным болезням. К тому же фагоцитарная активность нейтрофилов у детей первых лет жизни крайне низкая.

Возрастные изменения иммунитета. Вопрос о развитии иммунологического аппарата в пре- и постнатальном онтогенезе ещё далёк от своего решения. В настоящее время обнаружено, что плод в материнском организме ещё не содержит антигенов, он является иммунологически толерантным. В его организме не образуется никаких антител, и благодаря плаценте плод надёжно защищён от попадания антигенов с кровью матери.

Очевидно, переход от иммунологической толерантности к иммунологической реактивности происходит с момента рождения ребёнка. С этого времени начинает функционировать его собственный аппарат иммунологии, который вступает в действие на второй неделе после рождения. Образование собственных антител в организме ребёнка ещё незначительно, и важное значение в иммунологических реакциях в течение первого года жизни имеют антитела, получаемые с молоком матери. Интенсивное развитие иммунологического аппарата идёт со второго года примерно до 10 лет, затем с 10 до 20 лет интенсивность иммунной защиты незначительно ослабевает. С 20 до 40 лет уровень иммунных реакций стабилизируется и после 40 лет начинает постепенно снижаться.

Тромбоциты. Это кровяные пластинки - самые мелкие из форменных элементов крови. Основная функция тромбоцитов связанна с их участием в свёртывании крови. Нормальное функционирование кровообращения, препятствующее как кровопотери, так и свёртыванию крови внутри сосуда, достигается определённым равновесием двух существующих в организме систем - свёртывающей и противосвёртывающей.

Свёртывание крови у детей в первые дни после рождения замедленно, особенно это заметно на второй день жизни ребёнка.

С 3 по 7 день жизни свёртывание крови ускоряется и приближается к норме взрослых. У детей дошкольного и школьного возраста время свёртывания имеет широкие индивидуальные колебания. В среднем начало свёртывания в капле крови наступает через 1 - 2 минуты, конец свёртывания - через 3 -4 минуты.