Определение треугольника паскаля. Исследовательская работа по математике на тему "Треугольник Паскаля" (7 класс)




История треугольника. Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».


Свойства треугольника Паскаля. Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятностей обладает занимательными свойствами.


Свойства треугольника Паскаля. Числа треугольника симметричны(равны) относительно вертикальной оси. первое и последнее числа равны 1. второе и предпоследнее числа равны n. третье число равно треугольному числу, что также равно сумме номеров предшествующих строк. четвёртое число является тетраэдрическим. Сумма чисел восходящей диагонали, начинающейся с первого элемента (n-1)-й строки, есть n-е число Фибоначчи. Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана. Сумма чисел n-й строки треугольника Паскаля равна 2n. Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры. Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные в белый, то образуется треугольник Серпинского. Все числа в n-й строке, кроме единиц, делятся на число n, если и только если n является простым числом. Если в строке с нечётным номером сложить все числа с порядковыми номерами вида 3n, 3n+1, 3n+2, то первые две суммы будут равны, а третья на 1 меньше. Каждое число в треугольнике равно количеству способов добраться до него из вершины, перемещаясь либо вправо-вниз, либо влево-вниз.




Знаменитый американский учёный Мартин Гарднер сказал: «треугольник Паскаля так прост, что выписать его может и десятилетний ребёнок. В то же время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике».



Для того, чтобы получить треугольник Паскаля , перепишем Таблицу 1 из раздела «Формулы сокращенного умножения: степень суммы и степень разности» в следующем виде (Таблица П.):

Таблица П. – Натуральные степени бинома x + y

Степень Разложение в сумму одночленов
0 (x + y ) 0 = 1
1 (x + y ) 1 = 1x + 1y
2 (x + y ) 2 = 1x 2 + 2xy + 1y 2
3 (x + y ) 3 = 1x 3 + 3x 2 y + 3x y 2 + 1y 3
4 (x + y ) 4 = 1x 4 + 4x 3 y + 6x 2 y 2 + 4x y 3 + 1y 4
5 (x + y ) 5 = 1x 5 + 5x 4 y + 10x 3 y 2 + 10x 2 y 3 + 5x y 4 + 1y 5
6 (x + y ) 6 = 1x 6 + 6x 5 y + 15x 4 y 2 + 20x 3 y 3 +
+ 15x 2 y 4 + 6x y 5 + 1y 6

Теперь, воспользовавшись третьим столбцом Таблицы П., составим следующую Таблицу - Треугольник Паскаля :

Степень 0:

(x + y ) 0 =

Степень 1:

(x + y ) 1 =

Разложение в сумму одночленов:

1x + 1y

Степень 2:

(x + y ) 2 =

Разложение в сумму одночленов:

1x 2 + 2xy + 1y 2

Степень 3:

(x + y ) 3 =

Разложение в сумму одночленов:

1x 3 + 3x 2 y + 3x y 2 + 1y 3

Степень 4:

(x + y ) 4 =

Разложение в сумму одночленов:

1x 4 + 4x 3 y + 6x 2 y 2 +
+ 4x y 3 + 1y 4

Степень 5:

(x + y ) 5 =

Разложение в сумму одночленов:

1x 5 + 5x 4 y + 10x 3 y 2 +
+ 10x 2 y 3 + 5x y 4 + 1y 5

Степень 6:

(x + y ) 6 =

Разложение в сумму одночленов:

1x 6 + 6x 5 y + 15x 4 y 2 +
+ 20x 3 y 3 +
+ 15x 2 y 4 +
+ 6x y 5 + 1y 6

Теперь, записыая только коэффициенты разложений степеней бинома в сумму одночленов, получим следующую Таблицу - Треугольник Паскаля :

Таблица - Треугольник Паскаля

На всякий случай напомним, что Блез Паскаль – это знаменитый физик и математик, живший во Франции более трех веков назад.

В треугольнике Паскаля каждая строка соответствует строке с тем же номером в Таблице П. Однако в каждой строке треугольника Паскаля, в отличие от Таблицы П., записаны только коэффициенты разложения в сумму одночленов соответствующей степени бинома x + y .

Заполнив сначала строки треугольника Паскаля с номерами 0 и 1, рассмотрим строки с номерами 2 и далее.

Основным свойством треугольника Паскаля , позволяющим последовательно, начиная со строки с номером 2, заполнять его строки, является следующее свойство :

Каждая из строк , начиная со строки с номером 2, во-первых, начинается и заканчивается числом 1, а, во-вторых, между числами 1 стоят числа, каждое из которых равно сумме двух чисел, стоящих над ним в предыдущей строке.

Действительно, число 2, стоящее в строке с номером два, равно сумме чисел 1 плюс 1, стоящих в первой строке. Точно так же, числа 3 и 3, стоящие в строке с номером три, равны соответственно сумме чисел 1 плюс 2 и сумме чисел 2 плюс 1, стоящих во второй строке.

Также и для других строк.

Таким образом, свойство треугольника Паскаля позволяет, заполнив одну из строк, легко заполнить и следующую за ней, т.е. получить необходимые коэффициенты разложения в сумму одночленов следующей степени бинома x + y .

Пример . Написать разложение вида:

(x + y ) 7 .

Решение . Воспользовавшись строкой треугольника Паскаля с номером 6 и применив основное свойство треугольника Паскаля, получим строку с номером 7:

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике .

Для школьников, желающих хорошо подготовиться и сдать ЕГЭ

Отдел образования, спорта и туризма Борисовского райисполкома

Государственное учреждение образования

«Средняя школа № 16 г. Борисова»

Треугольник Паскаля

учащаяся 7 «А» класса

Абоян Елизавета Александровна,

домашний адрес: г. Борисов,

ул Смолевичская, д. 8, 76-51-80

Руководитель:

Ищук Ольга Эдуардовна, учитель математики

Борисов, 2016

Оглавление

Введение

В этом учебном году мы начали изучать новый предмет «геометрия».

Одна из глав курса геометрии называется «Треугольники». Меня очень заинтересовала данная тема. Я всегда хотела узнать много нового о треугольниках, об их происхождении и значении в нашей жизни. Ведь мир треугольников очень загадочен и интересен.

Треугольник - первая геометрическая фигура, встречающаяся в древних орнаментах. Изучая литературу, я узнала, что в Египте он символизировал триаду духовной воли, любви, интуиции и высшего разума человека, то есть его личность или душу.

Ацтеки использовали изображение треугольника с вершиной наверху, соединенного с перевернутым треугольником, в качестве символа временного цикла. Треугольник в сочетании с крестом образует алхимический знак Серы.

Равносторонний треугольник, символизирующий, по древнееврейской традиции, совершенство, у христиан означает Троицу - Отца, Сына и Святого Духа.

Существует множество видов треугольников, но больше всего меня заинтересовал треугольник Паскаля.

Проблема исследования:

Проблема моего исследования состоит в том, что я попыталась выявить и показать то, насколько широко треугольники используются в практической жизни.

Практическая значимость исследования:

Данная исследовательская работа может быть использован как дополнительный материал к урокам геометрии, для внеклассной работы по математике.

Цель исследования:

Ознакомиться с треугольником Паскаля и его применением как разновидностью треугольников;

Гипотеза:

Если числа треугольника Паскаля обладают особыми свойствами, то его можно считать уникальным для решения различных задач

Задачи:

Определить применение свойств чисел треугольника Паскаля;

Изучить литературу по теме «Треугольник Паскаля»;

Выявить свойства чисел, входящих в состав треугольника Паскаля;

Сформулировать вывод и итоги исследования;

Объект исследования: треугольник как геометрическая фигура

Предмет исследования: свойства треугольника Паскаля

Методы исследования:

Аналитико-статистическая работа со справочной, научно-познавательной и специальной литературой;

Поиск информации в интернет - ресурсах.

Направления работы:

Выбор проблемы, источников литературы, составление плана;

Работа с литературой и другими источниками;

Обработка полученных данных;

Анализ результатов, формулирование вывода;

Мультимедийная подготовка.

Основные этапы исследования: подготовительный; деятельностный;

Ход исследования: рефлексивный; аналитический; презентационный.

Теоретическая часть работы

Знакомство с треугольником Паскаля

Моё первое знакомство с треугольником Паскаля произошло во время изучения темы «Возведение двучлена в степень» на уроке алгебры. Мне уже известны формулы квадрата суммы и квадрата разности, куба суммы и куба разности. Я заметила, что получить формулы для возведения двучлена в четвёртую, пятую и т.д. степень возможно, учитывая некоторую закономерность в коэффициентах и степенях каждого слагаемого.

Коэффициенты всех строк можно расположить в виде треугольника:

Таким образом я познакомилась с треугольником Паскаля и решила продолжить изучение арифметического треугольника.

Блез Паскаль – французский математик

Блез Паскаль (19 июня 1623, Клермон-Ферран, - 19 августа 1662, Париж) - французский математик, физик, литератор и философ.

Паскаль был первоклассным математиком. Он помог создать два крупных новых направления математических исследований. В возрасте шестнадцати лет написал замечательный трактат о предмете проективной геометрии и в 1654 году переписывался с Пьером де Ферма по теории вероятностей, что впоследствии оказало принципиальное влияние на развитие современной экономики.

Треугольник Паскаля как разновидность треугольника

Изучая разновидности треугольников, я выяснила, что треугольник Паскаля - арифметический треугольник, образованный биномиальными коэффициентами. Назван в честь Блеза Паскаля. В действительности, треугольник Паскаля был известен задолго до 1653 года - даты выхода "Трактата об арифметическом треугольнике". Так, этот треугольник воспроизведен на титульном листе учебника арифметики, написанном в начале XVI Петром Апианом, астрономом из Ингольтштадского университета. Изображен треугольник и на иллюстрации в книге одного китайского математика, выпущенной в 1303 году. Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника уже около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.

Ещё я узнала из книги "Математические новеллы" (М., Мир, 1974) Мартина Гарднера, что "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике".

Я рассмотрела схему построения треугольника, предложенную Гуго Штейнгаузом в его классическом «Математическом калейдоскопе»: предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смайликом, а тремя, соответственно - розовыми. Это один из вариантов построения треугольника.

(Рисунок 1)

Изучая специальную литературу, я узнала, что еще проще объясняют устройство треугольника Паскаля слова : каждое число равно сумме двух расположенных над ним чисел .

Все элементарно, но сколько в этом таится чудес. Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину. Вдоль диагоналей (насколько у треугольника могут быть диагонали, но не будем придираться, такая терминология встречается в публикациях), параллельных сторонам треугольника (на рисунке отмечены зелеными линиями) выстроены треугольные числа и их обобщения на случай пространств всех размерностей. Треугольные числа в самом обычном и привычном нам виде показывают, сколько касающихся кружков можно расположить в виде треугольника - как классический пример начальная расстановка шаров в бильярде. К одной монетке можно прислонить еще две - итого три - к двум можно приладить еще три - итого шесть.

Получили треугольные числа на рисунке: 3; 6; 10; 15.

Продолжая наращивать ряды с сохранением формы треугольника получим ряд 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66..., что и показывает вторая зеленая линия. Этот замечательный ряд, каждый член которого равен сумме натурального ряда чисел (55=1+2+3+4+5+6+7+8+9+10), содержит также множество знакомцев, хорошо известных любителям математики: 6 и 28 - совершенные числа, 36 - квадратное число, 8 и 21 - числа Фибоначчи.

Следующая зеленая линия покажет нам тетраэдральные числа - один шар мы можем положить на три - итого четыре, под три подложим шесть - итого десять, и так далее.

Чтобы найти сумму чисел, стоящих на любой диагонали от начала до интересующего нас места, достаточно взглянуть на число, расположенное снизу и слева от последнего слагаемого, (слева для правой диагонали, для левой диагонали будет справа, а вообще - ближе к середине треугольника). Пусть, например, мы хотим вычислить сумму чисел натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму. Чему равна сумма первых восьми треугольных чисел? Отыскиваем восьмое число на второй диагонали и сдвигаемся вниз и влево. Ответ: 120.

(Рисунок 2)

Треугольник Паскаля имеет применение в теории вероятностей и обладает замечательными свойствами.

Свойства треугольника Паскаля и их применение в решении задач

Паскаль подробно исследовал свойства и применения своего "треугольника". Приведу для примера лишь 3 свойства "треугольника", найденные самим Паскалем; при этом буду исходить из того расположения "треугольника" на плоскости, какое было указанно Паскалем, и говорить о горизонтальных и вертикальных рядах.

Свойство 1: Каждое число А в таблице равно сумме чисел предшествующего горизонтального ряда, начиная с самого левого вплоть до стоящего непосредственно над числом А (в котором клетки, содержащие слагаемые, дающие в сумме А, заштрихованы). (Рисунок 4)

(Рисунок 4) (Рисунок 5) (Рисунок 6)

Свойство 2: Каждое число А в таблице равно сумме чисел предшествующего вертикального ряда, начиная с самого верхнего вплоть до стоящего непосредственно левее числа А. (Рисунок 5)

Свойство 3: Каждое число в таблице, будучи уменьшенным на единицу, равно сумме всех чисел, заполняющих прямоугольник, ограниченный теми вертикальными и горизонтальными рядами, на пересечении которых стоит число А (сами эти ряды в рассматриваемый прямоугольник не включаются). (Рисунок 6)

Треугольник Паскаля и теория вероятности.

Блез Паскаль и другой великий француз, Пьер Ферма, стали основателями теории вероятностей, когда Паскаль и Ферма независимо друг от друга дали правильное объяснение так называемого парадокса раздела ставки. Два игрока играют в "безобидную" игру (т.е. шансы победить у обоих одинаковы), договорившись, что тот, кто первым выигрывает шесть партий, получит весь приз. Предположим, что игра остановилась до того, как один из них выиграл приз (например, первый игрок выиграл пять партий, а второй - три). Как справедливо разделить приз? Так, согласно одному решению следовало разделить приз в отношении 5: 3, т.е. пропорционально выигранным партиям, согласно другому - в отношении 2: 1 (здесь рассуждения велись, по всей видимости, следующим образом: поскольку первый игрок выиграл на две партии больше, что составляет третью часть от необходимых для победы шести партий, то он должен получить одну треть от приза, а оставшуюся часть нужно разделить пополам).

А между тем делить надо в отношении 7:1. И Паскаль, и Ферма рассматривали парадокс раздела ставки как задачу о вероятностях, установив, что справедливым является раздел, пропорциональный шансам первого игрока выиграть приз. Предположим, первому игроку осталось выиграть только одну партию, а второму для победы необходимо выиграть еще три партии, причем игроки продолжают игру и играют все три партии, даже если некоторые из них окажутся лишними для определения победителя. Для такого продолжения все 2 3 = 8 возможных исходов будут равновероятными. Так как второй игрок получает приз только при одном исходе (если он выиграл все три партии), а в остальных случаях побеждает первый игрок, справедливым является отношение 7: 1.

В науке и практике часто встречаются задачи, решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач .

Рассмотрим основные формулы комбинаторики:


Это любое упорядоченное подмножество m из элементов множества n .

.

В треугольнике Паскаля число, показывающее, сколькими способами можно выбрать k элементов из множества, содержащего n различных элементов, стоит на пересечении k -ой диагонали и n -ой строки. Чтобы вычислить сочетание , н айду диагональ седьмую сверху и отсчитываю три числа по горизонтали. Получу число 35.

Можно использовать треугольник Паскаля и для вычисления размещений.

.Если нам нужно посчитать , то зная что , а 3!=6, получим значение данного размещения 210.

Я пришла к выводу, что рассмотренные свойства треугольника Паскаля подтверждают слова Мартина Гарднера о том, что треугольник Паскаля одна из наиболее изящных схем во всей математике.

Актуальность исследования обусловлена ежегодным усложнением заданий ЦТ, что требует углубленных знаний не только в алгебре, но и в геометрии.

Практическая часть работы

В своей практической работе я подобрала ряд задач по теме «Треугольник Паскаля»

Задача 1. В магазине «Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение:

В треугольнике Паскаля число, показывающее, сколькими способами можно выбрать k элементов из множества, содержащего n различных элементов, стоит на пересечении k-ой диагонали и n-ой строки.

Найду диагональ восьмую сверху и отсчитываю три числа по горизонтали. Получу число 56. (Рисунок 8)

Задача 2.Из шести врачей поликлиники двух необходимо отправить на курсы повышения квалификации. Сколькими способами это можно сделать?

Решение:

Найду диагональ шестую сверху и отсчитываю два числа по горизонтали. Получу число 15.

(Р(Рисунок 9)

Задача3. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все три тетради окажутся в клетку?

Решение. Сначала найдём общее число возможных исходов, т.е. сколькими способами мы можем выбрать 3 тетради из 12 тетрадей

Задача4. На плоскости даны 10 прямых, причём среди них нет параллельных и через каждую точку их пересечения проходят ровно две прямые. Сколько у них точек пересечения?

Решение: ответ находится на пересечении -45 точек!

Задача 5. В сумке 10 мячей, пронумерованных от 1 до 10. Наугад вынимают 2 мяча. Какова вероятность того, что это будут мячи с номерами 7 и 3?

Вынуть 2 мяча из 10 имеющихся можно 45 способами. Вероятность нашего события 2 из 45. (Рисунок 11)

В ходе проведения практического исследования я пришла к следующим выводам: при решении комбинаторных задач и задач по теории вероятностей можно пользоваться не только формулами комбинаторики, но и использовать свойства треугольника Паскаля

Заключение

Работа по выбранной теме осуществлялась в полном соответствии с планом исследования, а именно: объект и предмет исследования, поставлены цели и задачи, а также определены ожидаемые результаты. Были указаны используемые методы исследования, определена проблема.

В данной работе была дана общая характеристика треугольника как геометрической фигуры, был детально рассмотрен треугольник Паскаля, его свойства.

Я пришла к выводу, что одной из наиболее известных и изящных численных схем во всей математике является треугольник Паскаля. Треугольник Паскаля - понятие значительно шире, чем мне представлялось. Он обладает не только удивительными свойствами, но и применялся в архитектуре средних веков для построения схем пропорциональности и для построения прямых углов землемерами и архитекторами. Используя треугольник Паскаля, можно решить задачи из теории вероятности и комбинаторики. С комбинаторными задачами я встречалась на уроках математики в 6 классе и при решении олимпиадных задач

Практическая значимость данной работы заключается в следующем: я, изучив много литературы по данному вопросу, получила дополнительные знания в области математики, укрепила свой интерес к этой науке.

Я узнала, что треугольник Паскаля применяется:

    В курсе алгебры

    При решении комбинаторных задач

    Для решения различных задач в области физики

    С появлением вычислительных машин построение треугольника Паскаля стало излюбленной задачкой для начинающих при изучении основ программирования.

Работа по данной теме оказалась интересной и полезной.

Список использованных источников и литературы

1. Абачиев С. К., Радужная фрактальность треугольника Паскаля / С. К. Абачиев, -- Минск, 1999.-168с.

2. Галкин Е.В. Нестандартные задачи по математике. Задачи логического характера. Книга для учащихся 5-11кл.Москва, «Просвещение», 1996г. – 194 с.

3. Мартин Гарднер. Глава 17. Неисчерпаемое очарование треугольника Паскаля / Математические новеллы. - Минск: Мир, 1974.- 456 с.

4. Треугольник Паскаля. В. А. Успенский. - 2 - е изд. – Москва: Наука, 1979. – 48с.

5. Фукс Д., Фукс М., Арифметика биномиальных коэффициентов / Квант. - 1970. - № 6. - С.17-25.

6. Энциклопедия для детей. Т 11. Математика / Глав. ред. М. Аксенова; метод. и отв. ред. В. Володин. – М.: Аванта+,2004. – 688с.

7.

8. http :// davaiknam . ru / text / volshebnij - treugolenik .

Числовой треугольник Паскаля

В верхней строчке треугольника располагается одинокая единица. В остальных строках каждое число является суммой двух своих соседей этажом выше - слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю. Треугольник бесконечно простирается вниз; мы приводим лишь восемь верхних строчек: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …

Обозначим буквой n номер строки треугольника, а буквой k - номер числа в строке (нумерация начинается в обоих случаях с нуля). Чаще всего число в n -ой строке и на k -ом месте в этой строке обозначается C n k , реже - n k .

Назовём лишь некоторые факты, относящиеся к треугольнику Паскаля.

Числа в n -ой строке треугольника являются биномиальными коэффициентами , то есть коэффициентами в разложении n -ой степени бинома Ньютона : a + b n = ∑ k = 0 n C n k ⁢ a k ⁢ b n − k .

Сумма всех чисел в n -ой строке равна n -ой степени двойки: ∑ k = 0 n C n k = 2 n . Эта формула получается из формулы бинома, если положить a = b = 1 .

Можно доказать явную формулу для вычисления биномиального коэффициента: C n k = n ! k ! ⁢ n − k ! .

Если строки в треугольнике Паскаля выровнять по левому краю, то суммы чисел, расположенных вдоль диагоналей, идущих слева направо и снизу вверх, равны числам Фибоначчи - 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 … (каждое число в этой последовательности равно сумме двух предыдущих, а начинают последовательность две единицы): 1 ⬃ 1 2 1 ⬃ ⬃ 3 5 1 1 ⬃ ⬃ 8 13 1 2 1 ⬃ ⬃ 21 34 1 3 3 1 ⬃ ⬃ 55 89 1 4 6 4 1 ⬃ ⬃ 144 233 1 5 10 10 5 1 ⬃ ⬃ 377 610 1 6 15 20 15 6 1 ⬃ ⬃ 987 1597 1 7 21 35 35 21 7 1 ⬃ ⬃ 2584 4181 … ⬃ ⬃

Если раскрасить нечётные числа в треугольнике Паскаля в один цвет, а чётные - в другой, получится такая картина (на рисунке 10.1. «Треугольник Паскаля - Серпинского» указанным образом раскрашены числа в первых 128 строчках):


Похожее изображение можно построить следующим образом. В закрашенном треугольнике перекрасим в другой цвет его серединный треугольник (образованный серединами сторон исходного). Три маленьких треугольника, расположенные по углам большого, останутся закрашенными в прежний цвет. Поступим с каждым из них точно так же, как мы поступили с большим, то есть перекрасим в каждом серединный треугольник. То же самое сделаем с оставшимися треугольниками старого цвета. Если эту процедуру проделывать до бесконечности, на месте исходного треугольника останется двухцветная фигура. Та её часть, которая не перекрашена, называется треугольником Серпинского . Несколько первых этапов построения треугольника Серпинского показаны на рисунке 10.2. «Построение треугольника Серпинского» .


Важным свойством треугольника Серпинского является его самоподобие - ведь он состоит из трёх своих копий, уменьшенных в два раза (это части треугольника Серпинского, содержащиеся в маленьких треугольниках, примыкающих к углам). Самоподобие - одно из характерных свойств фракталов , о которых мы ещё поговорим в главе 44. «L-системы » . Треугольник Серпинского также будет упомянут в этой главе.

О таинственной связи треугольника Паскаля с простыми числами мы вычитали в книге в небольшой заметке Ю. Матиясевича . Заменим в треугольнике Паскаля числа на их остатки от деления на номер строки. Расположим строки в полученном треугольнике таким образом, чтобы следующая строка начиналась на две колонки правее начала предыдущей (см. рисунок 10.3. «Связь треугольника Паскаля с простыми числами»). Тогда столбцы с простыми номерами будут состоять из одних нулей, а в столбцах, чьи номера составные, найдётся ненулевое число.

Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… … Википедия

В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия

Таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят единицы, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа: В строке с номером n+1… … Математическая энциклопедия

Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпински … Википедия

Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

Треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). П. т. предложен Б. Паскалем (См. Паскаль). См. Арифметический треугольник …

Треугольник Паскаля, треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). По бокам А. т. стоят единицы, внутри суммы двух верхних чисел. В (n + 1) й строке А. т. биномиальные коэффициенты… … Большая советская энциклопедия

То же, что Паскаля треугольник … Математическая энциклопедия

В математике биномиальные коэффициенты это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В … Википедия

Коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы … Википедия

Книги

  • Треугольник Паскаля. Книга 102 , В. А. Успенский. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…
  • Треугольник Паскаля. Книга № 102 , Успенский В.А.. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…