Тема. Условия равновесия тела, которое имеет ось вращения

Момент силы. Условие равновесия тела, имеющего ось вращения

Моментом силы называют величину, способную вызывать и изменять вращение тела. При этом выделяют момент силы относительно точки (центра) и относительно оси.

Рис. 4.2

Момент силы относительно неподвижной точки О представляет собой вектор определяемый векторным произведением радиуса-вектора проведенного из точки О в точку N приложения силы, на силу рис. 4.2:

где модуль момента силы М =Fr sina=F ×l (l ¾плечо силы, то есть, кратчайшее расстояние между линией действия силы и точкой О ). Направлен вектор перпендикулярно плоскости, проходящей через центр О и силу в сторону, откуда поворот, вызываемый силой, виден против хода часовой стрелки.

Пример. Пусть точечный груз массой m подвешенный на нерастяжимой и невесомой нити длиной R к гвоздю, вбитому в потолок, совершает колебания около положения равновесия, рис. 4.3.

Рис. 4.3

Для рассматриваемого момента времени, когда груз возвращается в положение равновесия, вектор момента силы совпадает по направлению с вектором угловой скорости его модуль равен M 0 =mgl =mgR sina; момент силы натяжения нити Т всегда равен нулю, так как плечо этой силы равно нулю.

Момент силы относительно неподвижной оси z является алгебраической величиной, равной проекции на эту ось вектора момента силы, определенного относительно произвольной точки О на оси z , рис. 4.4.

Рис. 4.4

Для решения обычных школьных задач достаточно рассмотрения момента силы относительно оси z , перпендикулярной плоскости, в которой лежат векторы и рис. 4.5.

Направление оси при этом выбирают таким образом, чтобы момент был положительным, если он вызывает вращение по часовой стрелке.

Рис. 4.5

На любое тело могут действовать моменты различных сил, однако, для его равновесия, при наличии неподвижной оси вращения z , необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, относительно этой оси была равна нулю

или, формулируя более простым языком, моменты всех сил M z , вращающих тело по часовой стрелке, должны быть равны моментам всех сил, вращающих его против часовой стрелки. При этом тело будет либо покоиться, либо равномерно вращаться вокруг оси.

Если у тела отсутствует закрепленная ось вращения, для его равновесия необходимо и достаточно выполнение условий (4.1) и (4.6) относительно любой возможной оси.

Условия равновесия часто используются для измерения неизвестных сил путем их сравнения с известными силами. Например, величину различных сил (гравитационных, электростатических, магнитных) измеряют, сравнивая их с силой упругости. В частности силу тяжести, действующую на тело, можно определить по показаниям пружинного динамометра.

Важной задачей статики является определение центра тяжести тела или системы тел.Центром тяжести является точка приложения равнодействующей всех сил тяжести, действующих на тело при любом его положении в пространстве (обычно находится путем пересечения линий подвеса тела). Сумма моментов всех элементарных сил тяжести относительно любой оси, которая проходит через центр тяжести, равна нулю.

У однородного тела центр тяжести находится на оси симметрии и пересечении осей симметрии, при этом он может оказаться вне самого тела (например, у кольца).

Пример. Два человека, массой m 1 = 60 кг и m 2 = 100 кг находятся в равновесии на разных концах горизонтально расположенной однородной прямоугольной доски, длиной l = 3 м и массой m 3 = 30 кг, имеющей одинаковую толщину и расположенной на поваленномдереве, рис. 4.6. На каком расстоянии х от правого края доски находится центр тяжести системы, состоящей из доски и двух человек или, иными словами, точка касания доски с деревом?

Рис. 4.6

Решение. Согласно условию (4.2) равнодействующая сил тяжести по модулю равна модулю вектора т. е.m 1 g +m 2 g +m 3 g =N . Данное выражение полезно для общих рассуждений и правильного построения рисунка, но для решения задачи вполне достаточно воспользоваться условием (4.6).

При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые бы возникли под действием каждой силы в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов.

Векторная сумма всех сил, одновременно действующих на тело, называется равнодействующей силой .

Прямая, проходящая через вектор силы, называется линией действия силы. Если силы приложены к разным точкам тела и действуют не параллельно друг другу, то равнодействующая приложена к точке пересечения линий действия сил. Если силы действуют параллельно друг другу, то точки приложения результирующей силы нет, а линия ее действия определяется формулой: (см. рисунок).

Момент силы. Условие равновесия рычага

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, находится в состоянии равновесия.

Существует два вида механического движения – поступательное движение и вращение .

Если траектории движения всех точек тела одинаковы, то движение поступательное . Если траектории всех точек тела – дуги концентрических окружностей (окружностей с одним центром – точкой вращения), то движение вращательное.

Равновесие невращающихся тел : невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тела, имеющего неподвижную ось вращения

Если линия действия силы, приложенной к телу, проходит через ось вращения тела, то эта сила уравновешивается силой упругости со стороны оси вращения.

Если линия действия силы не пересекает ось вращения, то эта сила не может быть уравновешена силой упругости со стороны оси вращения, и тело поворачивается вокруг оси.

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы. Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тело находится в равновесии, если выполняется условие:

, где d 1 иd 2 – кратчайшие расстояния от линий действия силF 1 иF 2. Расстояниеdназываетсяплечом силы , а произведение модуля силы на плечо –моментом силы :

.

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, – отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии 1 м от оси вращения. Эту единицу называют ньютон-метром .

Общее условие равновесия тела :тело находится в равновесии, если равны нулю геометрическая сумма всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения .

При выполнении этого условия тело необязательно находится в покое. Оно может двигаться равномерно и прямолинейно или вращаться.

В предыдущем параграфе были выяснены условия равновесия тела при отсутствии вращения. Но как обеспечивается отсутствие вращения тела, т. е. его равновесие, когда на него действуют силы?

Чтобы ответить на этот вопрос, рассмотрим тело, которое не может совершать поступательного движения, но может поворачиваться или вращаться. Чтобы сделать невозможным поступательное движение тела, его достаточно закрепить в одной точке так, как можно, например, закрепить доску на стене, прибив ее одним гвоздем; поступательное движение такой «пригвожденной» доски становится невозможным, но доска может поворачиваться вокруг гвоздя, который служит ей осью поворота.

Выясним, при каких условиях покоящееся тело с закрепленной осью не будет поворачиваться под действием приложенных к нему сил. Представим себе некоторое тело, к которому в разных точках приложены две силы: (рис. 163, а). Чтобы найти равнодействующую этих сил, перенесем точки их приложения в точку А (рис. 163, б), в которой пересекаются линии действия обеих сил. Построив параллелограмм на силах получим их равнодействующую

Теперь предположим, что в какой-то точке О на линии, вдоль которой направлена равнодействующая проходит закрепленная ось, перпендикулярная плоскости чертежа. Мы можем себе, например, представить, что в точке О сквозь тело проходит гвоздь, вбитый в неподвижную стену. Тело в этом случае будет находиться в покое, потому что равнодействующая уравновешивается силой реакции (упругости) со стороны закрепленной оси (гвоздя): обе они направлены вдоль одной и той же прямой, равны по абсолютной величине и противоположны по направлению.

Предположим теперь, что одна из сил, например перестала действовать, так что тело подвергается действию только одной силы (рис. 163, в). Из рисунка видно, что эта сила заставит тело вращаться вокруг оси О по часовой стрелке. Если, наоборот, устранить

силу то оставшаяся сила вызовет вращение против часовой стрелки (рис. 163, г). Значит, каждая из сил обладает вращающим действием, причем эти действия характеризуются противоположными направлениями. Но когда обе силы действуют совместно, их вращающие действия взаимно друг друга компенсируют: вместе они поворота не вызывают. Поэтому следует считать, что, хотя силы сами по себе различны как по величине, так и по направлению, их вращающие действия одинаковы, но противоположны по направлению.

Попытаемся найти величину, которая характеризует вращающее действие силы. Мы пока знаем только, что она должна иметь одинаковые численные значения для обеих сил:

Обратимся к рисунку Силы неодинаковы по абсолютным значениям: больше Зато расстояние от точки О (оси) до линии действия силы меньше расстояния от оси до линии действия силы Таким образом, но

Быть может, равны между собой произведения

Если это так, то можно будет сказать, что величина, равная произведению силы на длину перпендикуляра, опущенного с закрепленной оси на линию действия силы, как раз и характеризует вращающее действие силы.

Нетрудно доказать, что равенство

действительно выполняется. Для этого проведем на рисунке 163, д вспомогательные прямые ОС и ОВ, параллельные силам подобия треугольников АВО и следует, что

Отсюда, учитывая, что АВ = ОС, получаем:

Рассмотрим теперь треугольники ОВК и Эти треугольники подобны, как прямоугольные с равными углами при вершинах С и В (они дополняют равные углы АСО и АВО до 180°). Из их подобия следует, что

Сравнивая пропорции (1) и (2), получаем:

Сделанное выше предположение оправдалось.

Приведенное довольно длинное геометрическое рассуждение позволило нам найти величину, которая одинакова для обеих сил и характеризует вращающее действие силы. Такой величиной является произведение силы на расстояние от линии ее. действия до оси вращения. Величина эта носит несколько странное название - момент силы или вращающий момент относительно оси, проходящей через точку О.

Цели занятия:

Образовательные. Изучить два условия равновесия тел, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить при каких условиях тела более устойчивы.

Развивающие: Способствовать развитию познавательного интереса к физике, развивать умения проводить сравнения, обобщать, выделять главное, делать выводы.

Воспитательные: воспитывать дисциплинированность, внимание, умения высказывать свою точку зрения и отстаивать ее.

План занятия:

1. Актуализация знаний

2. Что такое статика

3. Что такое равновесие. Виды равновесия

4. Центр масс

5. Решение задач

Ход занятия:

1.Актуализация знаний.

Преподаватель: Здравствуйте!

Студенты: Здравствуйте!

Преподаватель: Мы продолжаем с вами говорить о силах. Перед вами тело неправильной формы (камень), подвешенное на нити и прикрепленное к наклонной плоскости. Какие силы действуют на это тело?

Студенты: На тело действуют: сила натяжения нити, сила тяжести, сила, стремящаяся оторвать камень, противоположная силе натяжения нити, сила реакции опоры.

Преподаватель: Силы нашли, что делаем дальше?

Студенты: Пишем второй закон Ньютона.

Ускорение отсутствует, поэтому сумма всех сил равна нулю.

Преподаватель: О чем это говорит?

Студенты: Это говорит о том, что тело находится в состоянии покоя.

Преподаватель: Или же можно сказать, что тело находится в состоянии равновесия. Равновесие тела - это состояние покоя этого тела. Сегодня мы будем говорить о равновесии тел. Запишите тему занятия: "Условия равновесия тел. Виды равновесия."

2. Формирование новых знаний и способов действия.

Преподаватель: Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Вокруг нас нет ни одного тела, на которое не действовали бы силы. Под действием этих сил тела деформируются.

При выяснении условий равновесия деформированных тел необходимо учитывать величину и характер деформации, что усложняет выдвинутую задачу. Поэтому для выяснения основных законов равновесия для удобства ввели понятие абсолютно твердого тела.



Абсолютно твердое тело - это тело, у которого деформации, возникающие под действием приложенных к нему сил, пренебрежимо малы. Запишите определения статики, равновесия тел и абсолютно твердого тела с экрана (слайд 2).

И то, что мы с вами выяснили, что тело находится в равновесии, если геометрическая сумма всех сил, приложенных к нему, равна нулю является первым условием равновесия. Запишите 1 условие равновесия:

Если сумма сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось Х можно записать .

Равенство нулю суммы внешних сил, действующих на твердое тело, необходимо для его равновесия, но недостаточно. Например, к доске в различных точках приложили две равные по модулю и противоположно направленные силы. Сумма этих сил равна нулю. Доска при этом будет находиться в равновесии?

Студенты: Доска будет поворачиваться, например как руль велосипеда или автомобиля.

Преподаватель: Верно. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля. Почему это происходит?

Студенты: ???

Преподаватель: Любое тело находиться в равновесии, когда сумма всех сил, действующих на каждый его элемент, равна нулю. Но если сумма внешних сил равна нулю, то сумма всех сил, приложенных к каждому элементу тела, может быть не равна нулю. В этом случае тело не будет находиться в равновесии. Поэтому нам нужно выяснить еще одно условие равновесия тел. Для этого проведем эксперимент. (Вызываются двое студентов). Один из студентов прилагает силу ближе к оси вращения двери, другой учащийся - ближе к ручке. Они прилагают силы в разные стороны. Что произошло?

Студенты: Выиграл тот, который прилагал силу ближе к ручке.

Преподаватель: Где находится линия действия силы, приложенной первым учеником?

Студенты: Ближе к оси вращения двери.

Преподаватель: Где находится линия действия силы, приложенной вторым учеником?

Студенты: Ближе к дверной ручке.

Преподаватель: Что мы еще можем заметить?

Студенты: Что расстояния от оси вращения до линий приложения сил разные.

Преподаватель: Значит от чего еще зависит результат действия силы?

Студенты: Результат действия силы зависит от расстояния от оси вращения до линии действия силы.

Преподаватель: Чем является расстояние от оси вращения до линии действия силы?

Студенты: Плечом. Плечо - это перпендикуляр, проведенный из оси вращения на линию действия этой силы.

Преподаватель: Как относятся между собой силы и плечи в данном случае?

Студенты: По правилу равновесия рычага, силы действующие на него обратно пропорциональны плечам этих сил. .

Преподаватель: Что такое произведение модуля силы, вращающей тело, на ее плечо?

Студенты: Момент силы.

Преподаватель: Значит момент силы, приложенной первым студентам равен , а момент силы, приложенной вторым студентам равен

Теперь мы можем сформулировать второе условие равновесия: Твердое тело находится в равновесии, если алгебраическая сумма моментов внешних сил, действующих на него относительно любой оси, равна нулю.(слайд 3)

Введем понятие центра тяжести. Центр тяжести - это точка приложения равнодействующей силы тяжести (точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела). Есть еще понятие центра масс.

Центр масс системы материальных точек называется геометрическая точка, координаты которой определяются по формуле:

; так же для .

Центр тяжести совпадает с центром масс системы, если эта система находится в однородном гравитационном поле.

Посмотрите на экран. Попробуйте найти центр тяжести данных фигур. (слайд 4)

(Продемонстрировать с помощью бруска с углублениями и горками и шарика виды равновесия.)

На слайде 5 вы видите, то же что и видели на опыте. Запишите условия устойчивости равновесия со слайдов 6,7,8:

1. Тела находятся в состоянии устойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, возвращающие тело в положение равновесия.

2.Тела находятся в состоянии неустойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, удаляющие тело от положения равновесия.

3. Тела находятся в состоянии безразличного равновесия, если при малейшем отклонении от положения равновесия не возникает ни сила, ни момент силы, изменяющие положение тела.

Теперь посмотрите на слайд 9. Что вы можете сказать об условиях устойчивости во всех трех случаях.

Студенты: В первом случае, если точка опоры выше чем центр тяжести, то равновесие устойчивое.

Во втором случае, если точка опоры совпадает с центром тяжести, то равновесие безразличное.

В третьем случае, если центр тяжести выше чем точка опоры, равновесие неустойчивое.

Преподаватель: А теперь рассмотрим тела, имеющие площадь опоры. Под площадью опоры понимают площадь соприкосновения тела с опорой. (слайд 10).

Рассмотрим как изменяется положение линии действия силы тяжести по отношению к оси вращения тела при наклоне тела имеющего площадь опоры. (слайд 11)

Обратите внимание, что при повороте тела положение центра тяжести изменяется. А любая система всегда стремится к понижению положения центра тяжести. Так наклоненные тела будут находиться в состоянии устойчивого равновесия, пока линия действия силы тяжести будет проходить через площадь опоры. Посмотрите на слайд 12.

Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.

Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются. (слайд 13)

При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.(слайд 14)

Так наклоненные сооружения находятся в положении устойчивого равновесия, потому что линия действия силы тяжести проходит через площадь их опоры. Например, Пизанская башня.

Покачивание или наклон тела человека при ходьбе также объясняется стремлением сохранить устойчивое положение. Площадь опоры определяется площадью внутри линии, проведенной вокруг крайних точек касания телом опоры. когда человек стоит. Линия действия силы тяжести проходит через опору. Когда человек поднимает ногу, то, чтобы сохранить равновесие, он наклоняется перенося линию действия силы тяжести в новое положение таким образом, чтобы она вновь проходила через площадь опоры. (слайд 15)

Для устойчивости различных сооружений увеличивают площадь опоры или понижают положение центра тяжести сооружения, изготавливая мощную опору, или и увеличивают площадь опоры и, одновременно, понижают центр тяжести сооружения.

Устойчивость транспорта определяется теми же условиями. Так, из двух видов транспорта автомобиля и автобуса на наклонной дороге более устойчив автомобиль.

При одинаковом наклоне данных видов транспорта у автобуса линия силы тяжести проходит ближе к краю площади опоры.

Решение задач

Задача: Материальные точки массами m, 2m, 3m и 4m расположены в вершинах прямоугольника со сторонами 0,4м и 0,8 м. Найти центр тяжести системы этих материальных точек.

х с -? у с -?

Найти центр тяжести системы материальных точек - значит найти его координаты в системе координат XOY. Совместим начало координат XOY с вершиной прямоугольника, в котором расположена материальная точка массой m , а оси координат направим вдоль сторон прямоугольника. Координаты центра тяжести системы материальных точек равны:

Здесь -координата на оси ОХ точки массой . Как следует из чертежа, , ведь эта точка расположена в начале координат. Координата тоже равна нулю, координаты точек массами на оси ОХ одинаковы и равны длине стороны прямоугольника . Подставив значения координат получим

Координата на оси OY точки массой равна нулю, =0. Координаты точек массами на этой оси одинаковы и равны длине стороны прямоугольника . Подставив эти значения получим

Контрольные вопросы:

1. Условия равновесия тела?

1 условие равновесия:

Твердое тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к нему, равна нулю.

2 Условие равновесия: Твердое тело находится в равновесии, если алгебраическая сумма моментов внешних сил, действующих на него относительно любой оси, равна нулю.

2. Назовите виды равновесия.

Тела находятся в состоянии устойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, возвращающие тело в положение равновесия.

Тела находятся в состоянии неустойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, удаляющие тело от положения равновесия.

Тела находятся в состоянии безразличного равновесия, если при малейшем отклонении от положения равновесия не возникает ни сила, ни момент силы, изменяющие положение тела.

Домашнее задание:

Список использованной литературы:

1. Физика. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский; под ред. В. И. Николаева, Н. А. Парфентьевой. - 19-е изд. - М.: Просвещение, 2010. - 366 с.: ил.
2. Марон А.Е., Марон Е.А. «Сборник качественных задач по физике 10 кл, М.: Просвещение, 2006
3. Л.А. Кирик, Л.Э.Генденштейн, Ю.И.Дик. Методические материалы для преподавателя 10 класс,М.:Илекса, 2005.-304с:, 2005
4. Л.Э.Генденштейн, Ю.И.Дик. Физика 10 класс.-М.: Мнемозина,2010

Урок № 13

Тема. Момент силы. Условие равновесия тела, имеющего ось вращения

Цель: дать учащимся знания о момент силы правило моментов: показать, что правило моментов выполняется и для тела, которое имеет незакріплену ось вращения; объяснить значение правила моментов в быту.

Тип урока: комбинированный.

План урока

Контроль знаний

1. При каком условии тело находится в равновесии?

2. Какую задачу решает статика?

3. Как определить рівнодійну двух сил?

4. Условие равновесия тела, лежащего на наклонной плоскости?

5. Условие равновесия тела, подвешенного на кронштейне?

6. Равновесие тела, подвешенного на тросах

Изучение нового материала

1. Первое условие равновесия.

2. Плечо силы. Момент силы.

3. Второе условие равновесия (правило моментов)

Закрепление изученного материала

1. Контрольные вопросы.

2. Учимся решать задачи

Изучение нового материала

Длина перпендикуляра, опущенного из оси вращения на линию действия силы, называется плечом силы.

Вращательная действие силы определяется произведением модуля силы на расстояние от оси вращения до линии действия силы.

Моментом силы относительно оси вращения тела называют взятый со знаком «плюс» или «минус» произведение модуля силы на ее плечо:

M = ± Fl .

Будем считать момент положительным, если сила вызывает вращение тела против часовой стрелки, и отрицательным - если по часовой стрелке. В рассмотренном выше примере М1 = - F 1 l 1 , M 2 = F 2 l 2 , поэтому условие равновесия тела, закрепленного на оси, под действием двух сил можно записать в виде

M 1 + M 2 = 0.

3. Второе условие равновесия (правило моментов)

Чтобы тело, закрепленное на неподвижной оси, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов приложенных к телу сил равна нулю:

М1 + M 2 + М3 +... = 0.

Вопрос к учащимся в ходе изложения нового материала

1. Состояние тела называется равновесием в механике?

2. Обязательно ли равновесие означает состояние покоя?

3. Когда тело, закрепленное на оси, находится в равновесии под действием двух сил?

4. Можно ли применять условия равновесия тела, когда явной оси вращения нет?

Задачи, решаемые на уроке

1. До горизонтального стержня підвішано груз массой 50 кг (рис. 4). Каковы силы давления стержня на опоры, если AC = 40 см, BC = 60 см? Массой стержня можно пренебречь.

Так как стержень находится в равновесии,

mg + N 1 + N 2 = 0.

Отсюда N 1 + N 2 = mg . Применим правило моментов, считая, что ось вращения проходит через точку C . Тогда N 1 l 1 = N 2 l 2 (рис. 5).

Из уравнений получаем:

Подставляя числовые данные, находим N 1 = 300 H , N 2 = 200 H .

Ответ: 300 Н; 200 Н.

2. Легкий стержень длиной 1 м підвішано на двух тросах так, что точки крепления тросов расположены на расстоянии 10 и 20 см от концов стержня. К середине стержня підвішано груз массой 21 кг. Каковы силы натяжения тросов? (Ответ: 88 Р и 120 Р.)

3. Канат, на котором выступает канатоходец, должен выдерживать силу, что намного превышает вес канатоходца. Зачем нужно такое перестрахование?

Домашнее задание

1. Концы шнура длиной 10,4 м прикреплен на одинаковой высоте до двух столбов, расположенных на расстоянии 10 м друг от друга. К середине шнура підвішано груз массой 10 кг. Какой груз нужно подвесить к вертикального шнура, чтобы шнур был растянут с такой же силой?

2. Какой должна быть масса m противовеса, чтобы показан на рис. 6 шлагбаум легко было поднимать и опускать? Масса шлагбаума равна 30 кг.

3. До однородной балки массой 100 кг и длиной 3,5 м підвішано груз массой 70 кг на расстоянии 1 м от одного из концов. Балка концами лежит на опорах. Сила давления на каждую из опор?