Электромагнит без сердечника. Электромагниты

Расчет электромагнита постоянного тока

Электромагниты нашли в аппаратостроении широкое применение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, выключатели), и как устройство, создающее силы, например, в муфтах и тормозах.

При заданном потоке падение магнитного потенциала уменьшается с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материала, при данном потоке магнитная проницаемость должна быть возможно выше. Это позволяет уменьшить м.д.с. обмотки и мощность, необходимую для срабатывания электромагнита; уменьшаются размеры обмоточного окна и всего электромагнита. Уменьшение м.д.с. при прочих неизменных параметрах уменьшает температуру обмотки.

Вторым важным параметром материала является индукция насыщения. Сила, развиваемая электромагнитом, пропорциональна квадрату индукции. Поэтому чем больше допустимая индукция, тем больше развиваемая сила при тех же размерах.

После того, как обмотка электромагнита обесточивается, в системе существует остаточный поток, который определяется коэрцитивной силой материала и проводимостью рабочего зазора. Остаточный поток может привести к залипанию якоря. Во избежание этого явления требуется, чтобы материал обладал низкой коэрцитивной силой.

Существенными требованиями являются низкая стоимость материала и его технологичность.

Наряду с указанными свойствами магнитные характеристики материалов должны быть стабильны (не изменяться от температуры, времени, механических ударов).

В результате расчета магнитной цепи определяется не­обходимая магнито-движущая сила (МДС) обмотки. Обмотка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуе­мую МДС, а с другой – чтобы ее максимальная темпера­тура не превышала допустимой для используемого класса изоляции.

В зависимости от способа включения различают обмот­ки напряжения и обмотки тока. В первом случае напряже­ние, приложенное к обмотке, постоянно по своему действу­ющему значению, во втором - сопротивление обмотки электромагнита намного меньше сопротивления остальной части цепи, которым и определяется неизменное значение тока.

Расчет обмотки электромагнита постоянного тока .

На рисунке 72 показаны магнитопровод и катушка электро­магнита. Обмотка 1 катушки выполняется изолированным проводом, который наматывается на каркас 2.

Катушки могут быть и бескаркасными. В этом случае витки обмотки скрепляются ленточной или листовой изоляцией либо заливочным компаундом.

Для расчета обмотки напряжения должны быть заданы напряжение U и МДС. Сечение обмоточного провода q находим, исходя из потребной МДС:

где – удельное сопротивление;

– сред­няя длина витка (рисунок 72);

R – сопротивление обмотки, равное

При неизменной средней длине витка и заданном МДС определяется произведением .

Если при неизменном напряжении и средней дли­не витка требуется увеличить МДС, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число вит­ков. Ток в обмотке возрас­тет, так как сопротивление ее уменьшится за счет уменьшения числа витков и увели­чения сечения провода.

По найденному сечению с помощью таблиц сортаментов находится ближайший стан­дартный диаметр провода.

Рисунок 72 – К расчету обмотки электромагнита

Мощность, выделяющаяся в обмотке в виде тепла, определяется следующим образом:

Число витков обмотки при заданном сечении катушки определяется коэффициентом заполнения по меди

где – площадь, зани­маемая медью обмотки;

– сечение обмотки по меди.

Число витков

.

Тогда мощность, потребляемая обмоткой, определится выражением

.

Для расчета обмотки тока исходными параметрами яв­ляются МДС и ток цепи . Число витков обмотки нахо­дится из выражения . Сечение провода можно выбрать исходя из рекоменду­емой плотности тока, равной 2…4 А/мм 2 для продолжитель­ного, 5…12 А/мм 2 для повторно-кратковременного, 13…30 А/мм 2 для кратковременного режимов работы. Эти значения можно увеличить примерно в 2 раза, если срок службы обмотки и электромагнита не превышает 500 ч. Площадь окна, занимаемого рядовой обмоткой, определяется числом витков и диаметром провода d

Электромагниты в технических устройствах применяются для подъема грузов, переключения контактов реле магнитных пускателей, вентилей гидравлических систем, растормаживания механических тормозов и т. д.

На рис. 1.18 представлена схема магнитной цепи электромагнита.

Подвижная часть (якорь – 2, рис. 1.18) магнитопровода электромагнита отделена от его неподвижной части 1 рис. 1.18 воздушным зазором. При подключении намагничивающей обмотки к источнику электрической энергии возбуждается магнитное поле, возникает электромагнитная сила, действующая на якорь, и он, преодолевая силу тяжести, действие пружин и т. п., притягивается к неподвижной части магнитопровода.

Расчет силы притяжения электромагнита часто проводится приближенно, исходя из следующих соображений: 1. Ток I в обмотке имеет установившееся значение.

2. Сердечник 1 и якорь 2 не насыщены.

3. Потоком рассеяния Ф р и выпучиванием магнитного поля в зазорах пренебрегают.

4. При изменении воздушного зазора на dl 0 магнитная индукция В 0 остается постоянной.

В таком случае можно считать, что механическая работа по перемещению якоря в направлении действия сил F на расстояние dl 0 равна изменению энергии магнитного поля в воздушных зазорах, вследствие уменьшения их объемов.

С учетом двух воздушных зазоров имеем:

механическая работа

энергия магнитного поля в двух зазорах длиной dl 0 , где
– плотность электромагнитной энергии (энергия в единице объема зазора), S 0 – площадь одного воздушного зазора. Приравняв dW мех и dW эм , получим расчетную формулу силы притягивания электромагнита

1.16.

6.5.Об индуктивности намагничивающей обмотки.

Если катушка не имеет ферромагнитного сердечника, то зависимость потокосцепления y от тока катушки I линейная и индуктивность катушки
. Здесь индуктивность, как коэффициент пропорциональности между потокосцеплением и током катушки, является линейным параметром катушки. То же замечание относится и к намагничивающим обмоткам с ненасыщенным магнитопроводом (
).

Если поток Ф сцепляется со всеми w витками катушки (обмотки), то потокосцепление
, где
, тогда индуктивность

1.17

Здесь
– магнитное сопротивление на пути магнитного потока.

Абсолютная магнитная проницаемость ненасыщенных ферромагнитных материалов m а >> m 0 – магнитной проницаемости вакуума (4 10 -7 Гн/м) . Поэтому размещение намагничивающей обмотки на ферромагнитном магнитопроводе резко увеличивает индуктивность катушки.

Физически последнее утверждение объясняется способностью ферромагнетиков усиливать внешнее магнитное поле, созданное током обмотки, за счет ориентации по направлению поля собственных областей самопроизвольного намагничивания. Эта ориентация выражена тем четче, чем больше ток обмотки. Когда все области самопроизвольного намагничивания ориентируются в направлении внешнего поля, наступает магнитное насыщение магнитопровода, его магнитная проницаемость и индуктивность обмотки резко снижаются, магнитопровод перестает выполнять функцию локализации магнитного поля.

В общем случае, когда приходится считаться с тем что
, используется понятие дифференциальной индуктивности
(индуктивность L становится нелинейным параметром обмотки).

Индуктивность, как элемент схемы замещения реальной электрической цепи, дает возможность учитывать при расчетах явление самоидукции (при переменных токах катушки) и явление накопления энергии в магнитном поле катушки.

Хорошие постоянные магниты находят себе важные научные и технические применения, например в электроизмерительных приборах. Но создаваемые ими поля не очень сильны, хотя в последнее время и изготовляют специальные сплавы, которые позволяют получать сильные постоянные магниты, хорошо сохраняющие свои магнитные свойства. К числу таких сплавов относится, например, кобальтовая сталь, содержащая около 50% железа, около 30% кобальта, а также некоторое количество вольфрама, хрома и углерода. Кроме того, большим неудобством постоянных магнитов является невозможность быстро изменять магнитную индукцию их поля. В этом отношении гораздо удобнее применение соленоидов с током (электромагнитов), поле которых можно легко изменять, изменяя силу тока в обмотке соленоида. Поле соленоида можно увеличить в сотни и тысячи раз, помещая внутрь него железный сердечник. Именно так и устроено большинство электромагнитов, применяемых в технике.

Простейший электромагнит каждый легко может приготовить себе сам. Достаточно намотать на какой-нибудь железный стержень – болт или кусок железного прута – несколько десятков витков изолированной проволоки и присоединить концы этой обмотки к источнику постоянного тока: аккумулятору или гальванической батарее (рис. 366). Нередко электромагниту придают подковообразную форму (рис. 367), более выгодную для удержания груза.

Рис. 366. Простейший самодельный электромагнит в виде стержня

Рис. 367. Самодельный подковообразный магнит

Поле катушки с железным сердечником значительно сильнее, чем поле катушки без сердечника, потому что железо внутри катушки сильно намагничивается и поле его складывается с полем катушки. Однако применение железных сердечников в электромагнитах для усиления поля может оказаться полезным только до известного предела. Действительно, поле электромагнита складывается из поля, создаваемого обмоткой с током, и поля намагниченного сердечника, причем при небольших токах это последнее значительно сильнее, чем первое. При увеличении тока в обмотке оба эти поля возрастают сначала в одинаковой степени, а именно пропорционально току, так что роль сердечника продолжает оставаться решающей. Однако при дальнейшем увеличении тока в обмотке намагничивание железа начинает замедляться и железо приближается к состоянию магнитного насыщения. Когда практически все молекулярные токи ориентированы параллельно, дальнейшее увеличение тока обмотки уже ничего не может добавить к намагничиванию железа, тогда как поле обмотки продолжает расти пропорционально току. При большом токе в обмотке (точнее, когда число ампер-витков на метр достигает значений порядка ) поле, создаваемое самой обмоткой, оказывается гораздо сильнее поля насыщенного железного сердечника, так что сердечник становится практически бесполезным и лишь усложняет конструкцию электромагнита. Поэтому самые мощные электромагниты делают без железного сердечника.

Нетрудно видеть, что создание весьма мощных электромагнитов представляет собой очень сложную техническую задачу. Действительно, чтобы иметь возможность применить большие токи, надо иметь обмотку из толстой проволоки, иначе она сильно разогреется и может даже расплавиться. Иногда вместо проволоки применяют медные трубки, в которых циркулирует сильная струя воды для интенсивного охлаждения стенок трубок, по которым течет электрический ток. Но при обмотке из толстой проволоки или трубки нельзя уложить много витков на единице длины. Применение же сравнительно тонкой проволоки, обеспечивающей значительное число витков на метр, не дает возможности применять большие токи.

Очень остроумный выход из этого положения нашел советский физик Петр Леонидович Капица (1894-1984). Он пропускал через соленоид токи огромной силы – десятки тысяч ампер, – но только в течение короткого времени, примерно 0,01 с. За это время обмотка соленоида не успевала чрезмерно нагреться и получались сильные, хотя и кратковременные магнитные поля. Однако специальные приборы успевали регистрировать результаты опытов, в которых изучалось влияние создаваемых в соленоиде мощных магнитных полей на различные вещества.

В большинстве технических электромагнитов применяются обмотки, у которых число ампер-витков на метр не превышает нескольких десятков тысяч, так что для их питания можно ограничиться током в несколько ампер и проволокой умеренной толщины. При наличии железного сердечника в таких электромагнитах могут быть получены довольно сильные магнитные поля (с индукцией несколько тесла).

Наиболее интересным и перспективным явлением в природе считается магнетизм, который способен проявить себя через различные виды полей. Электромагнитные поля это всего лишь одна из разновидностей полей. Они образуются из двух видов полей электрического и магнитного. Давайте начнем разбираться именно с природой и принципом действием магнитных полей. В роли источника магнитных полей проще всего применить постоянные магниты и электромагниты. А вот как они работают, об этом мы ипоговорим.

Электромагнит, это простая электротехническая конструкция состоящая из обмотки и сердечник. Из курса электротехники известно, что в случае прохождения электрического тока через обмотку вокруг нее возникают электромагнитные поля.

То есть, в то время, когда электрических заряд движется он генерирует вокруг себя магнитные поля. Когда же он не перемещается, у него имеется только электрическое поле. Но, электроны и ионы никогда не будут находится в состоянии полного покоя. Всегда присутствует внутреннее движении, поэтому электрическое и магнитное поле присутствуют одномоментно, только в случае относительного покое в большей степени заметны электрические поля, а при увеличении движения элементарных частиц начинает преобладать магнитное поле.

Таким образом для возникновения магнитного поля требуется всего лишь пропустить ток по проводнику, а для повышения уровня интенсивность этого поля, требуется увеличить силу тока или длину электрического проводника. Но существует еще один фактор, влияющий на силу магнитного поля.

В электромагнитах, кроме выше сказанного имеется сердечник из магнитного материала. В таком магнитном материале осуществляется свое собственное внутреннее движения заряженных элементарных частиц. Но они располагаются в хаотичном порядке, из-за чего осуществляется взаимное гашение магнитных сил.

При воздействии внешним электромагнитным полем на такой материал возникает следующий эффект, а именно все внутренние магнитные поля этого материала поворачиваются в одном направлении, что ведёт к резкому росту магнитных свойств. Следовательно, для изготовления хорошего магнита требуется на магнитный сердечник намотать большое количество витков из медной проволоки, после чего пропустить через них ток.

Но помните, что при отключении напряжения у электромагнита исчезают все его свойства. Потому, что все заряженные частицы перестают двигаться в проводнике, а упорядоченные магнитные поля внутри магнитного сердечника возвращаются в исходное хаотичное состояние. Для изготовления постоянного магнита без электропитания, требуется, что бы внутренние магнитные поля оставались в однонаправленном состоянии. Этого можно добиться применяя специальные магнитные материалы, которые можно намагничивать или размагничивать.

В первоначальный момент это вещество не обладает такими сильными магнитными свойствами. Для намагничивания его, необходимо разместить в сильном постоянном магнитном поле. Через определенный промежуток времени и интенсивность воздействия данный материал становится постоянным магнитом. Для размагничивания постоянного магнита, го нужно подвергнуть высокой температуре, сильным ударам или воздействовать сильным переменным магнитным полем.

Думаю каждый встречал обычные постоянные магнитики. А знаете ли вы, что является истинной причиной их специфического действия? Думаю, совсем не многие об этом знают. Предлагая ознакомится с простой теоретической лекцией об устройстве постоянного магнита и магнитном поле

В принципе их расчет это достаточно сложный процесс, но для радиолюбителей, он существенно упращен. Магнитная цепь описывается величиной - В , на которую влияет напряженность поля и магнитная проницаемость вещества.Поэтому сердечники электромагнитов изготавливают из специаального сплава железа, обладающего высокой величиной магнитной проницаемости. От магнитной индукции зависит силовой поток, Ф .

Где, S площадь поперечного сечения магнитопровода. На силовой поток оказывает влияние и магнитодвижущая сила (Е м) , которая вычисляется по формуле:

Ф = (Е м)×R м, откуда Е м = 1,3×I×N

Где, где N - число витков катушки, а I - сила текущего по катушке тока в амперах.

Магнитное сопротивление определяется по формуле:

где L - средняя длина пути силовых магнитных линий, М - магнитная проницаемость, a S - поперечное сечение магнитопровода.

При изготовление самодельных электромагнитов стараются получить максимальный силовой поток. Добиваются этого уменьшением магнитного сопротивления. Для чего выбирают магнитопровод с минимальной длиной пути силовых линий и с максимально возможным поперечным сечением, а в качестве материала стальной сплав с отличной магнитной проницаемостью. Другой метод увеличения силового потока это увеличения количества ампервитков не очень целесообразен, т.к в целях экономии проволоки и напряжения питания следует стремиться к снижению числа ампервитков. Предположим, нам необходимо определить ампервитки и силовой поток замкнутого стального магнитопровода, изображенного на рисунке а ниже, и сделанного из стали плохого качества.


Для намотки катушек с минимальным числом витков для упрощенных расчетов примим величину магнитной индукции в 10 000 силовых линий на 1 см 2 при двух ампервитках на один сантиметр длины. В этом радиолюбительском примере расчет может быть осуществлен следующим образом. Так, при длине магнитопровода L =L1+L2 равной 20 см + 10 см = 30 см, потребуется 2×30=60 ампервитков.

Если диаметр сердечника D (Рисунок,в) равен2 см, то его площадь: S = 3,14xD2/4 = 3,14 см 2 , отсюда

Ф = B × S= 10000 × 3,14=31400 силовых линий

.

Можно приближенно определить и подъемную силу электромагнита P :

P = B2 × S/25 × 1000000 = 12,4 кг.

Для двухполюсного магнита полученный результат необходимо удвоить. При расчете подъемной силы магнита следует помнить, что она зависит не только от длины магнитопровода, но и от площади контакта якоря и сердечника. Поэтому якорь должен хорошо прилегать к полюсным наконечникам ЭМ, иначе случится резкое уменьшение подъемной силы. Далее можно сделать расчет катушки электромагнита. В случае двухполюсного магнита подъемная сила в 25 кг задается 60 ампервитками, т.е N×J = 60 ампервитков.

Конечно, можно задать и другое соотношение, например 2 А и 30 витков, либо увеличив число витков катушки 0,25 А и 240 витков. Однако изменение номинала тока в большом диапазоне не всегда можно осуществить на практике, т.к может потребываться уж очень большой диаметра применяемой проволоки. В нашем примере медная проволока должна быть следующего сечения: для тока в 2А - 0,4 мм 2 , а для тока в 0,25А - 0,05 мм 2 , диаметр проволоки будет 0,7 мм и 0,2 мм соответственно. Каким же из этих проводов случше осуществить обмотку? Зная диаметр проволоки и ее длину, можно легко найти сопротивление. Длина проволоки L вычисляется как, произведению общего числа витков на длину одного из них (среднюю): L = N × L1 где L1 - длина одного витка, равная 3,14 × D. В нашем примере D = = 6,3 см. Поэтому, для первой катушки длина медной проволки будет 190 см, а сопротивление обмотки постоянному току около 0,1 Ом, а для второй 512 см, с сопротивлением в 8,7 Ом. Зная закон Ома, легко найти нужное напряжение. Так, для создания в обмотках тока номиналом в 2А потребуется напряжение 0,2В, а для тока в 0,25А - 2,2В.

В результате расчета магнитной цепи определяется не­обходимая МДС обмотки. Обмотка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуе­мую МДС, а с другой - чтобы ее максимальная темпера­тура не превышала допустимой для используемого класса изоляции.

В зависимости от способа включения различают обмот­ки напряжения и обмотки тока. В первом случае напряже­ние, приложенное к обмотке, постоянно по своему действу­ющему значению, во втором сопротивление обмотки электромагнита намного меньше сопротивления остальной части цепи, которым и определяется неизменное значение тока.

Расчет обмотки электромагнита постоянного тока .

На рис. 4.8 показаны магнитопровод и катушка электро­магнита. Обмотка 1 катушки выполняется изолированным проводом, который наматывается на каркас 2.

Катушки могут быть и бескаркасными. В этом случае витки обмотки скрепляются ленточной или листовой изоляцией либо заливочным компаундом.

Для расчета обмотки напряжения должны быть заданы напряжение и МДС. Сечение обмоточного провода находим, исходя из потребной МДС:

, (4.13)

откуда , (4.14)

где удельное сопротивление; сред­няя длина витка (рис. 4.8); сопротивление обмотки, равное .

Из (4.13) следует, что при неизменной средней длине витка и заданном МДС определяется произведением .

Если при неизменном напряжении и средней дли­не витка требуется увеличить МДС, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число вит­ков. Ток в обмотке возрас­тет, так как сопротивление ее уменьшится за счет уменьшения числа витков и увели­чения сечения провода.

По найденному сечению с помощью таблиц сортаментов находится ближайший стан­дартный диаметр провода.

Мощность, выделяющаяся в обмотке в виде тепла, определяется следующим образом: .

Число витков обмотки при заданном сечении катушки определяется коэффициентом заполнения по меди , где – площадь, зани­маемая медью обмотки; – сечение обмотки по меди. Число витков . Тогда мощность, потребляемая обмоткой, определится выражением

.

Для расчета обмотки тока исходными параметрами яв­ляются МДС и ток цепи . Число витков обмотки нахо­дится из выражения . Сечение провода можно выбрать исходя из рекоменду­емой плотности тока, равной 2…4 А/мм 2 для продолжитель­ного, 5…12 А/мм 2 для повторно-кратковременного, 13…30 А/мм 2 для кратковременного режимов работы. Эти значения можно увеличить примерно в 2 раза, если срок службы обмотки и электромагнита не превышает 500 ч. Площадь окна, занимаемого рядовой обмоткой, определяется числом витков и диаметром провода

.

Зная , можно определить среднюю длину витка, сопротивление обмотки и потери в ней. После этого может быть проведена оценка нагрева обмотки.

Расчет обмотки электромагнитов переменного тока .

Исходными данными для расчета обмотки напряжения являются амплитуды МДС, магнитного потока и напряжение сети. Напряжение сети уравновешивается активным и реактивным падениями напряжения

где и – действующие значения напряжения и тока, соответственно.

Поскольку ток и сопротивление могут быть рассчитаны только после определения числа витков, то формула (4.15) не позво­ляет сразу найти все параметры обмотки. Задача решает­ся методом последовательных приближений.

Так как активное падение напряжения значительно меньше реактивного, то в начале расчета принимают .

Тогда число витков обмотки .

Если после подстановки полученных данных в (4.15) ле­вая часть отличается от правой более чем на 10 %, то не­обходимо варьировать число витков до получения удовле­творительного совпадения.

После расчета проводится проверка обмотки на на­грев. Расчет ведется так же, как и для обмоток постоянно­го тока.

Особенностью является нагрев магнитопровода за счет потерь от вихревых токов и гистерезиса. Отвод вы­деляемого в обмотке тепла через сердечник затруднен, точка с максимальной температурой лежит на внутрен­нем радиусе обмотки. Для улучшения охлаждения стре­мятся увеличивать поверхность торцов катушки при умень­шении ее длины.