Хромосомы человека. Строение и функции хромосом

Хромосома - это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек - это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой - от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


ХРОМОСОМА


СТРОЕНИЕ ХРОМОСОМ

  • Схема строения хромосомы в поздней профазе - метафазе митоза:

1-хроматида;

2-центромера;

3-короткое плечо;

4-длинное плечо

ЦЕНТРОМЕРА

  • ЦЕНТРОМЕРА (от центр + греч. meros - часть) - специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две хроматиды, образовавшиеся в результате дупликации хромосомы.


ЗНАЧЕНИЕ ЦЕНТРОМЕРЫ

  • Центромера играет важную роль при расположении хромосом в виде метафазной пластинки

  • В процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления.

  • Каждая центромера разделяет хромосому на два плеча.


ХРОМАТИДА

  • ХРОМАТИДА (от греч. chroma - цвет, краска + eidos - вид) - часть хромосомы от момента ее дупликации до разделения на две дочерние в анафазе, представляет собой нить молекулы ДНК соединенную с белками.

  • Хроматиды образуются в результате дупликации хромосом в процессе деления клетки.


  • Хромосомы имеются в ядрах всех клеток.

  • Каждая хромосома содержит наследственные инструкции - гены.


ГОМОЛОГИЧНЫЕ ХРОМОСОМЫ

  • От греч.Гомос - одинаковый

  • Гомологичные хромосомы - парные хромосомы, одинаковые по форме, размерам и набору генов.


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • В клетках тела двуполых животных и растений каждая хромосома представлена двумя гомологичными хромосомами, происходящими одна от материнского, а другая от отцовского организма. Такой набор хромосом называют диплоидным (двойным )


ГАПЛОИДНЫЙ НАБОР ХРОМОСОМ

  • Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Этот набор хромосом называют гаплоидным (одинарным).


ФУНКЦИИ ХРОМОСОМ

  • Осуществляют координацию и регуляцию процессов в клетке путем синтеза первичной структуры белка, информационной и рибосомальной РНК


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У РАСТЕНИЙ


ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ У ЖИВОТНЫХ

КОМАР – 6

ОКУНЬ – 28

ПЧЕЛА – 32

СВИНЬЯ – 38

МАКАК-РЕЗУС –42

КРОЛИК - 44

24-цветная FISH хромосом человека: a - метафазная пластинка (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


24-цветная FISH хромосом человека: b - pаскладка хромосом. (Рубцов Н. Б., Карамышева Т. В. Вестн. ВОГиС, 2000).


ВСЕ ХРОМОСОМЫ ЧЕЛОВЕКА


Лекция №3

Тема: Организация потока генетической информации

План лекции

1. Структура и функции клеточного ядра.

2. Хромосомы: структура и классификация.

3. Клеточный и митотический циклы.

4. Митоз, мейоз: цитологическая и цитогенетическая характеристика, значение.

Структура и функции клеточного ядра

Основная генетическая информация заключена в ядре клеток.

Клеточное ядро (лат. – nucleus ; греч. – karyon ) было описано в 1831г. Робертом Броуном. Форма ядра зависит от формы и функций клетки. Размеры ядер изменяются в зависимости от метаболической активности клеток.

Оболочка интерфазного ядра (кариолемма ) состоит из наружной и внутренней элементарных мембран. Между ними находится перинуклеарное пространство . В мембранах имеются отверстия – поры. Между краями ядерной поры располагаются белковые молекулы, которые образуют поровые комплексы. Отверстие пор закрыто тонкой пленкой. При активных процессах обмена веществ в клетке большинство пор открыто. Через них идет поток веществ – из цитоплазмы в ядро и обратно. Количество пор у одного ядра

Рис. Схема строения клеточного ядра

1 и 2 – наружная и внутренняя мембраны ядерной оболочки, 3

– ядерная пора, 4 – ядрышко, 5 – хроматин, 6 – ядерный сок

достигает 3-4 тысяч. Наружная ядерная мембрана соединяется с каналами эндоплазматической сети. На ней обычно располагаются рибосомы . Белки внутренней поверхности ядерной оболочки формируют ядерную пластинку . Она поддерживает постоянной форму ядра, к ней прикрепляются хромосомы.

Ядерный сок – кариолимфа , коллоидный раствор в состоянии геля, который содержит белки, липиды, углеводы, РНК, нуклеотиды, ферменты. Ядрышко – непостоянный компонент ядра. Оно исчезает в начале клеточного деления и восстанавливается в конце его. Химический состав ядрышек: белок (~90%), РНК (~6%), липиды, ферменты. Ядрышки образуются в области вторичных перетяжек спутничных хромосом. Функция ядрышек: сборка субъединиц рибосом.

Хроматин ядра – это интерфазные хромосомы. Они содержат ДНК, белки-гистоны и РНК в соотношении 1:1,3:0,2. ДНК в соединении с белком образует дезоксирибонуклеопротеин (ДНП). При митотическом делении ядра ДНП спирализуется и образует хромосомы.

Функции клеточного ядра:

1) хранит наследственную информацию клетки;

2) участвует в делении (размножении) клетки;

3) регулирует процессы обмена веществ в клетке.

Хромосомы: структура и классификация

Хромосомы (греч. – chromo – цвет, soma – тело) – это спирализованный хроматин. Их длина 0,2 – 5,0 мкм, диаметр 0,2 – 2 мкм.

Рис. Типы хромосом

Метафазная хромосома состоит из двух хроматид , которые соединяются центромерой (первичной перетяжкой ). Она делит хромосому на два плеча . Отдельные хромосомы имеют вторичные перетяжки . Участок, который они отделяют, называется спутником , а такие хромосомы – спутничными. Концевые участки хромосом называются теломеры . В каждую хроматиду входит одна непрерывная молекула ДНК в соединении с белками-гистонами. Интенсивно окрашивающиеся участки хромосом – это участки сильной спирализации (гетерохроматин ). Более светлые участки – участки слабой спирализации (эухроматин ).

Типы хромосом выделяют по расположению центромеры (рис.).

1. Метацентрические хромосомы – центромера расположена посередине, и плечи имеют одинаковую длину. Участок плеча около центромеры называется проксимальным, противоположный – дистальным.

2. Субметацентрические хромосомы – центромера смещена от центра и плечи имеют разную длину.

3. Акроцентрические хромосомы – центромера сильно смещена от центра и одно плечо очень короткое, второе плечо очень длинное.

В клетках слюнных желез насекомых (мух дрозофил) встречаются гигантские, политенные хромосомы (многонитчатые хромосомы).

Для хромосом всех организмов существует 4 правила:

1. Правило постоянства числа хромосом . В норме организмы определенных видов имеют постоянное, характерное для вида число хромосом. Например: у человека 46, у собаки 78, у мухи дрозофилы 8.

2. Парность хромосом . В диплоидном наборе в норме каждая хромосома имеет парную хромосому – одинаковую по форме и по величине.

3. Индивидуальность хромосом . Хромосомы разных пар отличаются по форме, строению и величине.

4. Непрерывность хромосом . При удвоении генетического материала хромосома образуется от хромосомы.

Набор хромосом соматической клетки, характерный для организма данного вида, называется кариотипом .

Классификацию хромосом проводят по разным признакам.

1. Хромосомы, одинаковые в клетках мужского и женского организмов,называются аутосомами . У человека в кариотипе 22 пары аутосом. Хромосомы, различные в клетках мужского и женского организмов, называются гетерохромосомами, или половыми хромосомами . У мужчины это Х и Y хромосомы, у женщины – Х и Х.

2. Расположение хромосом по убывающей величине называется идиограммой . Это систематизированный кариотип. Хромосомы располагаются парами (гомологичные хромосомы). Первая пара – самые большие, 22-я пара – маленькие и 23-я пара – половые хромосомы.

3. В 1960г. была предложена Денверская классификация хромосом. Она строится на основании их формы, размеров, положения центромеры, наличия вторичных перетяжек и спутников. Важным показателем в этой классификации является центромерный индекс (ЦИ). Это отношение длины короткого плеча хромосомы ко всей ее длине, выраженное в процентах. Все хромосомы разделены на 7 групп. Группы обозначаются латинскими буквами от А до G.

Группа А включает 1 – 3 пары хромосом. Это большие метацентрические и субметацентрические хромосомы. Их ЦИ 38-49%.

Группа В . 4-я и 5-я пары – большие метацентрические хромосомы. ЦИ 24-30%.

Группа С . Пары хромосом 6 – 12: средней величины, субметацентрические. ЦИ 27-35%. В эту группу входит и Х-хромосома.

Группа D . 13 – 15-я пары хромосом. Хромосомы акроцентрические. ЦИ около 15%.

Группа Е . Пары хромосом 16 – 18. Сравнительно короткие, метацентрические или субметацентрические. ЦИ 26-40%.

Группа F . 19 – 20-я пары. Короткие, субметацентрические хромосомы. ЦИ 36-46%.

Группа G . 21-22-я пары. Маленькие, акроцентрические хромосомы. ЦИ 13-33%. К этой группе относится и Y-хромосома.

4. Парижская классификация хромосом человека создана в 1971 году. С помощью этой классификации можно определять локализацию генов в определенной паре хромосом. Используя специальные методы окраски, в каждой хромосоме выявляют характерный порядок чередования темных и светлых полос (сегментов). Сегменты обозначают по названию методов, которые их выявляют: Q – сегменты – после окрашивания акрихин-ипритом; G – сегменты – окрашивание красителем Гимза; R – сегменты – окрашивание после тепловой денатурации и другие. Короткое плечо хромосомы обозначают буквой p, длинное – буквой q. Каждое плечо хромосомы делят на районы и обозначают цифрами от центромеры к теломеру. Полосы внутри районов нумеруют по порядку от центромеры. Например, расположение гена эстеразы D – 13p14 – четвертая полоса первого района короткого плеча 13-й хромосомы.

Функция хромосом: хранение, воспроизведение и передача генетической информации при размножении клеток и организмов.


Похожая информация.


Важнейшие из органелл клетки представляют собой микроскопические структуры , находящиеся в ядре. Они были открыты одновременно несколькими учёными, в том числе российским биологом Иваном Чистяковым.

Название нового клеточного компонента было придумано не сразу. Его дал немецкий учёный В. Вальдейер, который,окрашивая гистологические препараты, обнаружил некие тельца, хорошо окрашивающиеся фуксином. Тогда ещё не было точно известно какую роль в выполняют хромосомы.

Вконтакте

Значение

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула и образуется две сестринские хроматиды .

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными , потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка , которые называют хроматином .

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой — так именуется первичная перетяжка . При делении клетки удваивается также количество ДНК . Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту — РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам;
  • субметацентрические. Плечи не одинаковы , центромера смещена ближе к одному концу;
  • акроцентрические. Центромера сильно смещена и находится почти скраю;
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается .

У некоторых видов имеется вторичная перетяжка , которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами . Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом . Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию .

Диплоидный и гаплоидный наборы

Специфика строения хромосом может отличаться, смотря где они образуются. Как называется набор хромосом в соматических клеточных структурах? Он получил наименование диплоидного или двойного.Соматические клетки размножаются простым делением на две дочерние . В обычных клеточных образованиях каждая клеточка имеет свою гомологичную пару. Происходит это потому, что каждая из дочерних клеток должна иметь тот же объем наследственной информации , что и материнская.

Как соотносится число хромосом в соматических и половых клетках. Здесь числовое соотношение составляет два к одному. В процессе образования половых клеток происходит особый тип деле­ния , в итоге набор в зрелых яйцеклетках и сперматозо­идах становится одинарным. Какую функцию выполняют хромосомы можно объяснить, изучая особенности их устройства.

Мужские и женские половые клетки имеют половинчатый набор, называемый гаплоидным , то есть всего их насчитывается 23. Сперматозоид сливается с яйцеклеткой, получается новый организм с полным набором. Генетическая информация мужчины и женщины таким образом объединяется. Если бы половые клетки несли диплоидный набор (46), то при соединении получился бы нежизнеспособный организм .

Разнообразие генома

Число носителей генетической информации у разных классов и видов живых существ отличается.

Они обладают способностью окрашиваться специально подобранными красителями, в их структуре чередуются светлые и тёмные поперечные участки — нуклеотиды . Их последовательность и расположение носят специфический характер. Благодаря этому учёные научились различать клетки и, в случае необходимости, чётко указывать «поломанную».

В настоящее время генетики расшифровали человека и составили генетические карты, что позволяет методом анализа предположить некоторые серьёзные наследственные заболевания ещё до того, как они проявятся.

Появилась возможность подтверждать отцовство, определять этническую принадлежность , выявлять, не является ли человек носителем какой-либо патологии, до времени не проявляющейся либо дремлющей внутри организма, определять особенности негативной реакции на лекарства и многое другое.

Немного о патологии

В процессе передачи генного набора могут происходить сбои и мутации , приводящие к серьёзным последствиям, среди них встречаются

  • делеции — потеря одного участка плеча, вызывающая недоразвитие органов и клеток головного мозга;
  • инверсии – процессы, при которых фрагмент переворачивается на 180 градусов, результатом становится неправильная последовательность расположения генов ;
  • дупликации – раздвоение участка плеча.

Мутации могут возникать и между рядом находящимися тельцами — этот феномен был назван транслокацией. Известные синдромы Дауна, Патау, Эдвардса также являются следствием нарушения работы генного аппарата .

Хромосомные болезни. Примеры и причины

Классификация клеток и хромосом

Заключение

Значение хромосом велико. Без этих мельчайших ультраструктур невозможна передача генной информации , следовательно, организмы не смогут размножаться. Современные технологии могут читать, заложенный в них код и успешно предотвращать возможные болезни , которые раннее считались неизлечимыми.