Каковы плюсы и минусы атомной энергии? Плюсы и минусы атомной энергетики.

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Атомная энергетика в основном ассоциируется с Чернобыльской катастрофой, случившейся в 1986 году. Тогда весь мир был потрясен последствиями взрыва атомного реактора, в результате чего тысячи людей получили серьезные проблемы со здоровьем или погибли. Тысячи гектаров загрязненной территории, на которой нельзя жить, работать и выращивать урожай или же экологический способ добывания энергии, который станет шагом в светлое будущее для миллионов людей?

Плюсы атомной энергетики

Строительство атомных электростанций остается прибыльными за счет минимальных расходов на производство энергии. Как известно для работы ТЭС нужен уголь, причем ежедневно его расход составляет около миллиона тонн. К себестоимости угля добавляются расходы на транспортировку топлива, что также стоит немало. Что же касается АЭС это обогащенный уран, в связи с чем происходит экономия и на расходы на транспортировку топлива и на его покупку.


Также нельзя не отметить экологичность работы АЭС, ведь долгое время считалось, что именно атомная энергетика положит конец загрязнению окружающей среды. Города, которые строятся вокруг атомных станций, экологически чистые, так как работа реакторов не сопровождается постоянным выбросом вредных веществ в атмосферу, к тому же использование ядерного топлива не требует кислорода. Как результат, экологическая катастрофа городов может страдать только от выхлопных газов и работы других промышленных объектов.

Экономия средств в данном случае происходит и за счет того, что не требуется строить очистные сооружения для уменьшения выбросов продуктов сгорания в окружающую среду. Проблема с загрязнением больших городов на сегодняшний день становится все более актуальной, так как нередко уровень загрязнения в городах, в которых построены ТЭС, превышает в 2 – 2,5 раза критические показатели загрязнения воздуха серой, золовой пыли, альдегидами, оксидами углерода и азотом.

Чернобыльская катастрофа стала большим уроком для мирового сообщества в связи с чем можно сказать о том, что работа атомных электростанций с каждым годом становится все безопаснее. Практически на всех АЭС были установлены дополнительные меры безопасности, которые во много раз уменьшили возможность того, что произойдет авария, подобная Чернобыльской катастрофе. Реакторы типа Чернобыльского РБМК были заменены реакторами нового поколения, имеющими повышенную безопасность.

Минусы атомной энергетики

Самым главным минусом атомной энергетики является память о том, как почти 30 лет тому назад на реакторе , взрыв на котором считался невозможным и практически нереальным, произошла авария, ставшая причиной всемирной трагедии. Случилось так потому что авария коснулась не только СССР, но и всего мира – радиоактивное облако со стороны нынешней Украины пошло сначала в сторону Белоруссии, после Франции, Италии и так достигло США.

Даже мысль о том, что однажды такое может повториться становится причиной того, что множество людей и ученых выступают против строительства новых АЭС. Кстати Чернобыльская катастрофа считается не единственной аварией подобного рода, еще свежи в памяти события аварии в Японии на АЭС Онагава и АЭС Фукусима – 1 , на которых в результате мощнейшего землетрясения начался пожар. Он стал причиной расплавления ядерного топлива в реаторе блока № 1, из-за чего началась утечка радиации. Это стало последствием эвакуации населения, которое проживало на расстоянии 10 км от станций.

Также стоит вспомнить о крупной аварии на , когда от раскаленного пара от турбины третьего реактора погибло 4 человека и пострадало свыше 200 человек. Ежедневно по вине человека или в результате действия стихии возможны аварии на АЭС, в результате чего радиоактивные отходы попадут в продукты, воду и окружающую среду, отравляя миллионы людей. Именно это считается самым главным минусом атомной энергетики на сегодняшний день.

Кроме того очень остро стоит проблема утилизации радиоактивных отходов, для сооружения могильников нужны большие территории, что является большой проблемой для маленьких стран. Несмотря на то, что отходы битумируются и скрываются за толщей железа и цемента, никто не может с точностью уверить всех в том, что они будут оставаться безопасными для людей много лет. Также не стоит забывать, что утилизация радиоактивных отходов очень дорого обходится, вследствие экономии затрат на остекловывание, сжигание, уплотнение и цементирование радиоактивных отходов, возможны их утечки. При стабильном финансировании и большой территории страны этой проблемы не существует, но этим может похвастаться не каждое государство.

Также стоит отметить, что при работе АЭС, как и на каждом производстве, происходят аварии, что становится причиной выброса радиоактивных отходов в атмосферу, землю и реки. Мельчайшие частицы урана и других изотопов присутствуют в воздухе городов, в которых построены АЭС, что становится причиной отравления окружающей среды.

Выводы

Хотя атомная энергетика остается источником загрязнения и возможных катастроф, все же следует отметить, что ее развитие будет происходить и дальше, хотя бы по той причине, что это дешевый способ получения энергии , а месторождения углеводородного топлива постепенно исчерпываются. В умелых руках атомная энергетика действительно может стать безопасным и экологически чистым способом добывания энергии, однако стоит все же отметить, что большинство катастроф произошло именно по вине человека.

В проблемах, касающихся утилизации радиоактивных отходов, очень важно международное сотрудничество, ведь только оно может дать достаточное финансирование для безопасного и долгосрочного захоронения радиационных отходов и использованного ядерного топлива.

Ядерная энергетика – единственный способ удовлетворить растущую потребность человечества в электричестве.

Никакие другие источники энергии не в состоянии произвести достаточное количество электричества. Его мировое потребление с 1990 по 2008 год выросло на 39 % и ежегодно увеличивается. Солнечная энергия не может удовлетворить индустриальные потребности в электричестве. Запасы нефти и угля истощаются. На 2016 год в мире функционировал 451 ядерный энергоблок. Суммарно энергоблоки выработали 10,7 % мирового объема генерации электричества. 20 % всей электроэнергии, вырабатываемой в России, производят атомные станции.

Энергия, выделяемая во время ядерной реакции, значительно превышает количество тепла, которое освобождается при горении.

1 кг урана, обогащенный до 4 %, выделяет количество энергии, эквивалентное сжиганию 60 тонн нефти или 100 тонн угля.

Безопасная работа атомных станций в сравнении с тепловыми.

С момента строительства первых атомных объектов произошло около трех десятков аварий, в четырех случаях произошел выброс вредных веществ в атмосферу. Число происшествий, связанных со взрывом метана на угольных шахтах, исчисляется десятками. Из-за устаревшего оборудования число аварий на ТЭС увеличивается с каждым годом. Последняя крупная авария в России произошла в 2016 году на Сахалине. Тогда без света остались 20 тысяч россиян. Взрыв в 2013 году на Углегорской ТЭС (Донецкая область, Украина) спровоцировал пожар, который не могли потушить в течение 15 часов. В атмосферу было выброшено большое количество токсичных веществ.

Независимость от ископаемых источников энергии.

Запасы природного топлива истощаются. Остатки угля и нефти оцениваются в 0,4 ИДж (1 ИДж = 10 24 Дж). Запасы урана превышают 2,5 ИДж. К тому же, уран может использоваться повторно. Ядерное топливо легко перевозить, расходы на транспортировку минимальны.

Сравнительная экологичность атомных электростанций.

В 2013 году мировые выбросы от использования ископаемого топлива для получения электричества составили 32 гигатонны. Сюда входят углеводороды и альдегиды, сернистый газ, оксиды азота. АЭС не потребляет кислород, ТЭС же использует кислород для окисления топлива и производит сотни тысяч тонн золы в год. Выбросы на АЭС происходят в редких случаях. Побочным эффектом их деятельности является эмиссия радионуклидов, которые распадаются в течение нескольких часов.

"Парниковый эффект" стимулирует страны ограничивать объемы сжигания угля и нефти. Атомные электростанции Европы ежегодно снижают эмиссию СО2 на 700 миллионов тонн.

Положительное влияние на экономику.

Строительство АЭС создает рабочие места на станции и в сопутствующих отраслях. Ленинградская АЭС, к примеру, обеспечивает локальные промышленные предприятия отоплением и горячей технической водой. Станция является источником медицинского кислорода для медучреждений и жидкого азота для предприятий. Гидротехнический цех поставляет потребителям питьевую воду. Объем производства энергии АЭС напрямую связан с ростом благосостояния района.

Незначительное количество действительно опасных отходов.

Отработанное ядерное топливо - источник энергии. Радиоактивные отходы составляют 5 % отработанного топлива. Из 50 кг отходов всего 2 кг нуждаются в длительном хранении и требуют серьезной изоляции.

Радиоактивные вещества смешивают с жидким стеклом и заливают в контейнеры с толстыми стенами из легированной стали. Железные контейнеры готовы обеспечить надежное хранение опасных веществ на протяжении 200-300 лет.

Строительство плавучих атомных электростанций (ПАТЭС) позволит обеспечить дешевой электроэнергией труднодоступные территории, в том числе и в сеймоопасных районах.

АЭС жизненно необходимы в труднодоступных районах Дальнего Востока и Крайнего Севера, но строительство стационарных станций экономически не оправдано в малонаселенных территориях. Выходом станет использование малых плавучих атомных тепловых станций. Первую в мире ПАТЭС "Академик Ломоносов" запустят осенью 2019 года на побережье Чукотского полуострова в Певеке. Строительство плавучего энергоблока (ПЭБ) ведется на Балтийском заводе Санкт-Петербурга. Всего планируется к 2020 году запустить в эксплуатацию 7 ПАТЭС. В числе плюсов использования плавучих АЭС:

  • обеспечение дешевой электроэнергией и теплом;
  • получение 40-240 тысяч кубометров пресной воды в сутки;
  • отсутствие необходимости в срочной эвакуации населения при авариях на ПЭБ;
  • повышенная удароустойчивость энергоблоков;
  • потенциальный скачок в развитии экономики районов с ПАТЭС.

Предложить свой факт

Минусы ядерной энергии

Большие затраты на строительство АЭС.

Строительство современной атомной станции оценивается в 9 млрд долларов. По версии некоторых экспертов, расходы могут достигать 20-25 млрд евро. Стоимость одного реактора, в зависимости от его мощности и поставщика, колеблется в пределах 2-5 млрд долларов. Это в 4,4 раза выше стоимости ветряной энергетики и в 5 раз дороже солнечной. Срок окупаемости станции достаточно велик.

Запасы урана-235, который используют практически все АЭС, ограничены.

Запасов урана-235 хватит на 50 лет. Переход на использование комбинации из урана-238 и тория позволит вырабатывать энергию для человечества еще тысячу лет. Проблема в том, что для перехода на уран-238 и торий необходим уран-235. Использование всех запасов урана-235 сделает сделает переход невозможным.

Затраты на производство ядерной энергии превышают эксплуатационные расходы ветряных станций.

Исследователи компании «Energy Fair» представили отчет, который демонстрирует экономическую нецелесообразность использования ядерной энергии. 1 МВт/час, произведенный АЭС, обходится на 60 фунтов (96$) дороже аналогичного объема энергии, произведенного ветряными мельницами. Эксплуатация станций по расщеплению атома обходится в 202 фунта (323$) на 1 мвт/час, объекта ветроэнергетики - в 140 фунтов (224$).

Тяжелые последствия аварий на АЭС.

Риск аварий на объектах существует на протяжении всего срока эксплуатации атомных реакторов. Яркий пример - авария на ЧАЭС, на ликвидацию которой было направлено 600 тыс. человек. В течение 20 лет после аварии умерли 5 тысяч ликвидаторов. Реки, озера, лесные угодья, малые и крупные населенные пункты (5 млн га земель) стали непригодными для жизни. 200 тысяч км2 подверглись загрязнению. Авария стала причиной тысяч смертей, увеличения числа больных раком щитовидной железы. В Европе впоследствии зафиксировали 10 тысяч случаев рождения детей с уродствами.

Необходимость захоронения радиоактивных отходов.

Каждый этап расщепления атома связан с образованием опасных отходов. Сооружаются могильники для изоляции радиоактивных веществ до их полного распада, занимающие большие площади на поверхности Земли, расположенные в отдаленных местах мирового океана. 55 млн тонн радиоактивных отходов, захороненных на площади 180 гектаров в Таджикистане, рискуют проникнуть в окружающую среду. По данным на 2009 год, только 47 % радиоактивных отходов российских предприятий находятся в безопасном состоянии.

1. ТЭС. Тепловые Энерго(электро) Станции. Базируются на переработке(сжигании) твердых топливных носителей, таких, как например уголь.

1. Большой объем выработки электроэнергии.

2. Наиболее просты в эксплуатации.

3. Сам принцип работы и постройка их очень просты.

4. Дешевы, легкодоступны.

5. Дают рабочие места.

1. Дают меньше электроэнергии, чем ГЭС и АЭС

2. Экологически опасны - загрязнение окружающей среды, парниковый эффект, требуют потребления невозобновляемых ресурсов(как уголь).

3. В силу своего примитивизма являются просто морально устаревшими.

ГЭС - Гидро Электро Станция. Базируются на использовании водных ресурсов, реки, приливно-отливные циклы.

1. Относительно экологически безопасны.

2. Дают в разы больше электроэнергии, чем ТЭС.

3. Могут давать дополнительные подпроизведственные структуры.

4. Рабочие места.

5. Более просты в эксплуатации, чем АЭС. .

1. Опять же, экологическая безопасность относительна(взрыв плотины, загрязнение воды при отсутствии очистительного цикла, нарушение баланса).

2. Большие затраты на строительство.

3. Дают меньше энергии, чем АЭС.

АЭС - Атомные Электростанции. Самые совершенные на данный момент ЭС по уровню мощности. Используют урановые стержни изотопа урана -278 и энергию атомной реакции.

1. Относительно малое потребление ресурсов. Самый главный - уран.

2. Мощнейшие по выработке электроэнергии ЭС. Одна ЭС может обеспечивать целые города и мегаполисы, ближлежащие районы, вообщем, охватывают огромные территории.

3. Более современны, чем ТЭС.

4. Дают большое количство рабочих место.

5. Открывают пути к созданию более совершенных ЭС.

1. Постоянное загрязнение окружающей среды. Смог, радиация.

2. Потребление редких ресурсов - уран.

3. Использование воды,загрязнение ее.

4. Вероятная угроза экологической суперкатастрофы. При потере контроля за ядерными реакциями, нарушениями цикла охлаждения(ярчайший пример обоих ошибок - Чернобыль; АЭС до сих пор закрыта саркофагом, самая страшная экологическая катастрофа в истории человечества) ,внешнем в воздействии(землетрясение, прмер - Фукусима), военной атаке или подрыве террористами - весьма вероятна(или - почти стопроцентна) экологическая катастрофа, а также весьма вероятна угроза взрыва АЭС, - это взрыв, ударная волна, и самое главное, радиоактивное заражение обширной территории, отзвуки такой катастрофы могут поразить весь мир. Потому АЭС является наравне с ОМП(Оружием Массового Поражения) одним из самых опасных достижений человечества, хотя АЭС - это Мирный атом. Впервые АЭС была создана в СССР.

Энергетику необходимо развивать отнюдь не только в направлении использования возонбновляемых ресурсов, а еще также развивать более совершенные типы ЭС, которые будут принципиально новыми по своей основе и типу работы. Гипотетически, в скором времени начнется освоения космоса, также проникновение в другие тайны микромира и вообще, физики могут дать поразительные результаты. Доведение до максимального совершенства АЭС - также перспективный путь развития энергетики.

На данном этапе конечно же, наиболее вероятным и реализуемым является вариант развития ветрогонных комплексов, солнечных батарей и ДОВЕДЕНИЕ до максимального совершенства ГЭС и АЭС.

Плюсы и минусы атомной энергетики
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.
Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.
К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. #2

Ядерная топливно-энергетическая база России.

Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск). #4
В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440). #9

Новые энергоблоки.
Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.
Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.
Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.
Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны). #9

Перспективы развития атомной энергетики.
При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.
Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U 238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.
Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин. #2
Отдельно рассмотрим перспективы атомной энергетики в России . Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.
Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.