Кровоток фазный в венах что это. Методы исследования вен конечностей Заболевания сосудов, диагностируемые с помощью уздг

  • Консервативное лечение варикоза
  • Лечение варикоза лазером
  • Радиочастотная абляция вен
  • Склеротерапия
  • Флебэктомия
  • Риски и осложнения лечения вен
  • Лечение вен: результаты (фото до и после)
  • Физиология венозного кровообращения

    Венозная система обеспечивает процесс оттока крови из тканей и органов, забирая ее из капилляров и артериовенозных анастомозов. Венозная система имеет две главные функции – транспортную и резервуарную. При этом благодаря анатомическому строению вен есть возможность качественного выполнения этих обеих функций.

    В нормальных условиях около 85% крови от нижних конечностей поступает по системе глубоких вен, остальная часть - по системе поверхностных вен, при этом за счет клапанов вен кровь движется исключительно снизу вверх по направлению к сердцу.

    По перфорантным венам кровь в норме направляется из поверхностных вен к глубоким венам. Исключением из этого правила являются перфорантные вены стопы, обеспечивающие возможность кровотока в обоих направлениях.В физиологических условиях примерно половина таких вен на стопе не содержат клапанов. Именно поэтому кровь от стопы может переходить как из глубоких вен в поверхностные так и наоборот, в зависимости от условий нагрузки и оттока крови по венам конечностей. Благодаря наличию такого вида сообщений существует возможность оттока крови и при окклюзиях глубоких вен.

    Продвижение крови по венам от стоп к сердцу обусловлено несколькими факторами: мышечными сокращениями («мышечной помпой») голени, сдавлением вен сухожилиями в местах, где они тесно соприкасаются (аппарат Брауна), работой соответствующих групп мышц, присасывающей силой сердца и грудной клетки, а также передаточной пульсацией артерий, наличием венозного тонуса.

    1 - Работа мышечной помпы в норме; 2 - Работа мышечной помпы при варикозе.

    Нервная регуляция вен

    Потребности организма постоянно меняются, поэтому вены активно приспосабливаются к изменениям, меняя свой диаметр. Установлено, что вены имеют констрикторные (сосудосуживающими) волокна.

    1 - Вена до воздействия симпатического импульса; 2 - После воздействия симпатического импульса сосуд сужен.

    Стимулирование симпатической цепочки приводит к активному сокращению вен и улучшению тонуса стенок. Кроме того, вены более чувствительны к раздражению симпатических нервов, чем артерии. Процесс максимальной симпатической стимуляции сокращает объем крови в венах примерно на треть. Нервные констрикторные волокна вен в организме активируются с помощью барорецепторов, а также при участии рефлексогенной зоны сердца и такой же зоны легких. Эти рецепторы в соответствии со своим расположением подают сигналы об изменениях в центральном объеме крови.

    Если приток крови в сторону сердца снижается, активность рецепторов снижается, резистивные и емкостные сосуды сужаются. Как показали экспериментальные и клинические наблюдения, венозный возврат может быть рефлекторно ограничен с помощью растяжения полостей сердца.

    Влияние констрикторов на стенку вены во многом зависит от исходной степени ее растяжения. В тех случаях, когда давление внутри сосудов определяет их поперечное сечение в форме круга, просвет вен сужается, а кровь продвигается к сердце.

    Если же венозная стенка находится в расслабленном состоянии, а площадь поперечного сечения сосуда принимает форму эллипса, симпатические импульсы не оказывают существенного влияния на емкость вен, а иногда могут способствовать увеличению их емкости за счет перемены конфигурации сосуда.


    Если бы кровеносная система была выполнена в виде соединенных жестких трубок, то резкие перемены позы не влияли бы так резко на венозный возврат.

    Но поскольку каждая человеческая вена является тонкостенным сосудом, значительно увеличивающим свой объем даже при небольшом повышении давления, то появление ортостатической нагрузки приводит к "депонированию" крови и сокращению кровенаполнения сердца.

    Когда человек находится в горизонтальном положении, то уровень его давления в венах рук и ног примерно одинаков и составляет 10-15 мм рт. ст.

    Когда человек встает, уровень давления в венах ног сильно возрастает; в нижних отделах ног он достигает 85-100 мм рт. ст. в зависимости от роста. Глубокие и поверхностные вены нижних конечностей имеют одинаковый уровень давления. Поскольку венозные синусы икроножных мышц имеют большие размеры, а мышечная оболочка глубоких вен менее развита по сравнению с ними, то большая часть кровяной массы находится именно в глубоких венах. Емкость венозного русла напрямую зависит от мышечной массы конечности.

    Нормальный показатель увеличения количества крови в обеих нижних конечностях при вставании колеблется от 300 до 400 мл. Это перераспределение крови влечет за собой сокращение количества венозной крови, идущей к сердцу, а также снижение минутного объема до 10%; это может привести к артериальной гипотензии и даже обморокам.

    Мышечно-венозная помпа

    Вертикальное положение требует мышечного напряжения скелетной мускулатуры, которое сопровождается ростом давления внутри мышц на 50-60 мм рт. ст. Этого достаточно для того, чтобы ограничить растяжимость вен и предотвращать ортостатические нарушения. Но главную роль в деле перемещения крови к сердцу играет активность мышечно-венозной помпы.

    Поток крови из поверхностных вен в глубокие (норма)

    Движение венозной крови в нижних конечностях (норма).
    1 - Сафено-феморальное соустье; 2 - Бедренная вена; 3 - Большая подкожная вена; 4 - Малая подкожная вена; 5 - Перфорантные вены; 6 - Глубокие вены голени.

    Еще Гарвей предполагал, что глубокие вены конечностей и скелетные мышцы взаимодействуют в деле продвижения крови к сердцу.

    При измерении давления в венах на стопе человека выяснилось, что уже при первом шаге оно уменьшается вдвое по сравнению с начальным. Повторные сокращения мышц ведут к падению давления до 20-30 мм рт. ст. Было выявлено, что кровь движется по венам к сердцу то же периоды, когда сокращаются мышцы. При расслаблении мышц конечностей, венозная система заполняется кровью из отделов, лежащих ниже.

    Схематическое представление работы мышечно-венозной помпы. Нормальная работа мышечно-венозной помпы голени (Vis a tergo).
    1 - Момент сокращения мышц; 2 - Момент расслабления мышц.

    Когда мышцы находятся в расслабленном спокойном состоянии, клапаны остаются в открытом положении и не создают препятствий для возникновения гидростатического столба крови между сердечной мышцей и стопами. При этом уровень давления в глубоких и поверхностных венах ног на одном уровне остается одинаковым.

    Когда мышцы сокращаются, процесс механической компрессии увеличивает давление в глубоких и поверхностных венах и помогает крови продвигаться наверх. Расслабление мышц приводит к падению давления в венах. Период расслабления сопровождается падением давления в глубокой вене на уровень ниже чем в поверхностной, это приводит к поступлению крови не только их нижнего сегмента, но и их поверхностных вен через коммуникантные. Как отметили Б. Фолков и Э. Нил, мышечная помпа «выдаивает» венозный сегмент, движение крови становится поступательным и облегчается посредством уменьшения гидростатического давления кровяного столба в направлении сердца.

    Мышечно-венозная помпа делится на помпы стоп. голеней, бедер и брюшной стенки.

    Ходьба приводит к интенсивной работе мышц, особенно мышц голени, покрытых плотной фасцией. В икроножной мышце средний уровень давления при сокращении может достигать 70-100 мм рт. ст., а в момент максимального напряжения – до 200 мм рт. ст. Мышцы бедра, лишенные плотного покрытия фасцией, повышают уровень давление при сокращении лишь до 20-30 мм. рт. ст.

    Помпа имеет важную особенность: отток крови происходит не только из-за сокращения небольших мышц стопы, но и из-за воздействия всей массы тела.

    Исследования подтверждают то, что мышечная помпа голени имеет большое значение в обеспечении венозного возврата. Ритмическое сокращение мышц голени ведет за собой перепады давления в глубокой вене и в поверхностной вене, чьи перепады соответствуют происходящим в глубокой, но запаздывают на 0,1-0,2 с. Из-за этого запаздывания и возникает фаза, когда кровь перетекает из поверхностной системы вен в глубокую.

    Наличие в перфорантных венах ориентированных клапанов объясняет, почему отсутствует ретроградный кровоток в течение почти всего периода расслабления, а также в момент сокращения мышц.

    Повторяющиеся циклы сокращение-расслабление снижает давление в венах нижних конечностей; оно возвращается к исходному уровню через некоторое время, которое тем меньше, чем больше был объем выполненной работы.

    Венозная гипотензия, возникающая после ходьбы, важна для организма, поскольку она снижает давление в капиллярах и увеличивает эффективность перфузионного давления в тканях. Данный период можно определить исходя из величины артериального кровотока, которая прямо пропорциональна интенсивности мышечной нагрузки.

    Венозные клапаны

    С помощью прижизненной фиброфлебоскопии можно представить цикл работы венозного клапана следующим образом. Ретроградная волна крови, попадая в синусы клапана, приводит в движение его створки, которые в результате начинают смыкаться. Сигнал об этом доходит до мышечного сфинктера, который достигает оптимального диаметра, нужного, чтобы расправить створки клапана и заблокировать ретроградную волну крови.

    В случае, когда давление в синусе становится выше порогового уровня, открывается устье дренирующих вен и венозная гипертензия снижается.

    Другие факторы, способствующие венозному возврату

    Среди других факторов, которые облегчают приток венозной крови к сердцу, важную роль играет деятельность миокарда.


    Цикл деятельности сердца.
    1 - Расслабление (кровь заполняет предсердия); 2 - Систола предсердий и диастола желудочков; 3 - Желудочки заполнены, трехстворчатый и митральный клапаны закрыты; 4 - Систола предсердий.

    Классическая концепция, называемая vis a tergo (проталкивание) предполагает, что существует сила, которая передается крови в то время как она проходит через сердце. Уровень положительного давления, передаваемого через капилляры на венозное ложе, составляет 12-15 мм рт. ст. Так как сопротивление венозных сосудов является небольшим, то это давление даже без вспомогательных факторов в состоянии покоя обеспечивает адекватный уровень притока крови к сердцу. Изменение vis a tergo редко влечет за собой изменение венозного возврата, за исключением случаев наличия артериовенозных шунтов или выраженной сердечной недостаточности.

    Большее значение имеет, возможно, совокупность факторов, определяющих "присасывание" крови и получивших название vis a fronte.


    Присасывание крови, возникающее из-за сокращения диафрагмы, а также экскурсии лёгких и работы сердца (Vis a fronte)

    Главными факторами этой силы являются работа сердца и дыхания. Когда регистрировали объемный кровоток в верхних и нижних полых венах, это послужило доказательством того, что состояние притока крови к сердцу имеет два максимума. Один из них (тот. что более выраженный) происходит во время систолы желудочков, а второй (менее выраженный) - в определенный момент их диастолы. Причиной увеличения венозного возврата во время систолы желудочков является то, что во время изгнания крови повышается емкость правого предсердия. Это приводит к быстрому снижению давления в нем и резкому повышению притока крови из полых вен под действием увеличившегося градиента давления. Таким образом, желудочки сердца не только занимаются выталкиванием крови в артериальную систему, но и "втягиванием" ее из венозной системы. Так называемая присасывающая сила сердца перестает действовать на давление в нижней полой вене сразу же под диафрагмой. Таким образом, vis a fronte включает в себя действие факторов, распространяющихся на процесс венозного кровотока вблизи сердца.

    Существенное место среди факторов, которые определяют vis a fronte, занимает влияние дыхания и движений, связанных с этим процессом.


    1 - Диафрагма; 2 - Мышцы брюшного пресса.

    Нормальное дыхание сопровождается колебаниями внутрибрюшного давления, которые оказывают совершенно незначительное влияние на приток венозной крови к сердцу, поскольку кратковременное повышение внутрибрюшного давления во время опускания диафрагмы нивелируется повышением сопротивления сосудов печени. Если же делается глубокий вдох, или выполняется натуживание, роль внутрибрюшного давления в процессе венозного возврата сильно увеличивается.

    Важно понимать, что влияние дыхательных движений простирается и на отдаленные участки венозной системы. Этим они отличаются от присасывающей силы сердца. Такое влияние дыхательных колебаний было зарегистрировано даже на глубоких и поверхностных венах ног. Например, во время глубокого вдоха давление в БПВ снижалось на 10 мм рт. ст.

    Таким образом, даже выключенные сосудодвигательные рефлексы не могут остановить продвижение крови к сердцу, поскольку оно обеспечивается через взаимодействие двух сил - проталкивающей (vis a tergo) и тянущей (vis a fronte). Соотносительная роль этих сил в целостном организме велика, но трудно оценима. Но считается, что величина силы vis a tergo более постоянна, тогда как величина vis a fronte зависит от многочисленных и разнообразных факторов.

    Из всех вышеперечисленных факторов наиболее значимым является функция «мышечно-венозной помпы» голени. В момент сокращения, мышцы сдавливают глубокие вены и выдавливают кровь в вышележащие отделы, перфоранты при этом тоже сдавливаются, но кровь в поверхностную систему через них не поступает, так как этому препятствует работа клапанов. При расслаблении мышц пустые глубокие вены «втягивают» в себя кровь из поверхностных вен и каждый раз обратному току крови препятствуют клапаны.

    Суть первичного варикозного расширения вен заключается том, что гладкомышечные и эластические волокна стенок подкожных вен постепенно разрушаются и расширяются. Это приводит к относительной недостаточности клапанов, створки которых перестают полностью смыкаться.

    Из-за этого возникает сброс крови сверху вниз, который проходит по каждой подкожной вене (вертикальный рефлюкс) и через глубокие вены проходит через перфорантные в поверхностные (горизонтальный рефлюкс).

    Жалобы больных и анамнез при большинстве заболеваний вен иногда сразу позволяют создать представление о характере заболевания. Знание симптомов болезни при объективном обследовании также дает возможность дифференцировать наиболее часто встречающееся варикозное расширение вен от посттромбофлебитического синдрома, трофических нарушений иной природы. Тромбофлебит глубоких вен легко отличить от поражения поверхностных вен по характерному внешнему виду конечности. О проходимости вен и состоятельности их клапанного аппарата можно с большой достоверностью судить по функциональным пробам, применяемым во флебологии.

    Инструментальные методы исследования необходимы для уточнения диагноза и выбора метода лечения. Для диагностики заболеваний вен применяют те же инструментальные исследования, которые используются для дифференциальной диагностики заболеваний артерий: различные варианты ультразвукового и рентгенологического исследований, варианты компьютерной и магнитно-резонансной томографии.

    Ультразвуковая допплерогафия (УЗДГ) - метод, позволяющий производить регистрацию кровотока в венах и по его изменению судить об их проходимости и состоянии клапанного аппарата. В норме кровоток в венах носит фазный характер, синхронизирован с дыханием: ослабевает или исчезает на вдохе и усиливается на выдохе. Для исследования функции клапанов бедренных вен и остиального клапана применяют пробу Вальсальвы. При этом пациенту предлагают сделать глубокий вдох и, не выдыхая, максимально натужиться. В норме при этом происходит смыкание створок клапанов и кровоток перестает регистрироваться, ретроградные потоки крови отсутствуют. Для определения состояния клапанов подколенной вены и вен голени используются компрессионные пробы. В норме при компрессии ретроградный кровоток также не определяется.

    Дуплексное сканирование позволяет судить об изменениях в поверхностных и глубоких венах, о состоянии нижней полой и подвздошных вен, наглядно оценить состояние венозной стенки, клапанов, просвета вены, выявить тромботические массы. В норме вены легко сжимаются датчиком, имеют тонкие стенки, однородный эхонегативный просвет, равномерно прокрашиваются при цветном картировании. При проведении функциональных проб ретроградные потоки не регистрируются, створки клапанов полностью смыкаются.

    Рентгеноконтрастная флебография является "золотым стандартом" в диагностике тромбоза глубоких вен. Она позволяет судить о проходимости глубоких вен, о наличии тромбов в ее просвете по дефектам заполнения просвета вены контрастом, оценить состояние клапанного аппарата глубоких и прободающих вен. Однако у флебографии имеется ряд недостатков. Стоимость флебографии выше, чем ультразвуковое исследование, некоторые больные не переносят введение контрастного вещества. После флебографии могут образовываться тромбы. Необходимость в рентгеноконтраст- ной флебографии может возникнуть при подозрении на флотирующие тромбы в глубоких венах и при посттромбофлебитическом синдроме для планирования различных реконструктивных операций.

    При восходящей дистальной флебографии контрастное вещество вводят в одну из вен тыла стопы или медиальную краевую вену. Для контрастирования глубоких вен в нижней трети голени (над лодыжками) накладывают резиновый жгут для сдавления поверхностных вен. Исследование целесообразно проводить в вертикальном положении больного с использованием функциональных проб (функционально-динамическая флебография). Первый снимок делают сразу же после окончания инъекции (фаза покоя), второй - при напряженных мышцах голени в момент подъема больного на носки (фаза мышечного напряжения), третий - после 10-12 приподниманий на носках (фаза релаксации).

    В норме в первых двух фазах контрастное вещество заполняет глубокие вены голени и бедренную вену. На снимках видны гладкие правильные контуры указанных вен, хорошо прослеживается их клапанный аппарат. В третьей фазе вены полностью опорожняются от контрастного вещества. На флебограммах удается четко определить локализацию патологических изменений в магистральных венах и функцию клапанов.

    При тазовой флебографии контрастное вещество вводят непосредственно в бедренную вену путем пункции либо катетеризации по Сельдингеру. Она позволяет оценить проходимость подвздошных, тазовых и нижней полой вен.

    Альтернативой традиционной флебографии может служить магнитно-резонансная (MP) флебография. Этот дорогостоящий метод целесообразно использовать при острых венозных тромбозах для определения его протяженности, расположения верхушки тромба. Исследование не требует применения контрастных средств, кроме того, позволяет исследовать венозную систему в различных проекциях и оценить состояние паравазальных структур. MP-флебография обеспечивает хорошую визуализацию тазовых вен и коллатералей. Для диагностики поражений вен нижних конечностей можно применять компьютерно-томографическую (КТ) флебографию.

    Сердечно-сосудистая система состоит из сердца и сосудов - артерий, артериол, капилляров, венул и вен, артерио-венозных анастомозов. Транспортная функция ее заключается в том, что сердце обеспечивает продвижение крови по замкнутой цепи сосудов - эластических трубок различного диаметра. Обьем крови у мужчин составляет 77 мл/кг веса (5,4 л), у женщин - 65 мл/кг веса (4,5 л). Распределение общего объема крови: 84% - в большом круге кровообращения, 9 % - в малом круге кровообращения, 7% — в сердце .

    Выделяют артерии:

    1. Эластического типа (аорта, легочная артерия).

    2. Мышечно-эластического типа (сонные, подключичные, позвоночные).

    3. Мышечного типа (артерии конечностей, туловища, внутренних органов).

    1. Волокнистого типа (безмышечные): твердой и мягкой мозговых оболочек (не имеют клапанов); сетчатки глаза; костей, селезенки, плаценты.

    2. Мышечного типа:

    а) со слабым развитием мышечных элементов (верхняя полая вена и ее ветви, вены лица и шеи);

    б) со средним развитием мышечных элементов (вены верхних конечностей);

    в) с сильным развитием мышечных элементов (нижняя полая вена и ее ветви, вены нижних конечностей).

    Строение стенок сосудов, как артерий, так и вен, представлено следующими составляющими: интима - внутренняя оболочка, медия - средняя, адвентиция - наружная.

    Все кровеносные сосуды выстланы изнутри слоем эндотелия. Во всех сосудах, кроме истинных капилляров, имеются эластичные, коллагеновые и гладкомышечные волокна. Их количество в разных сосудах различное.

    В зависимости от выполняемой функции выделяют следующие группы сосудов:

    1. Амортизирующие сосуды - аорта, легочная артерия. Высокое содержание эластических волокон в этих сосудах обусловливает амортизирующий эффект, заключающийся в сглаживании периодических систолических волн.

    2. Резистивные сосуды-концевые артериолы (прекапилляры) и, в меньшей степени, капилляры и венулы. Они имеют малый просвет и толстые стенки с развитой гладкой мускулатурой, оказывают наибольшее сопротивление кровотоку.

    3. Сосуды-сфинктеры - терминальные отделы прекапиллярных артериол. От сужения или расширения сфинктеров зависит число функционирующих капилляров, то есть площадь обменной поверхности.

    4. Обменные сосуды - капилляры. В них происходят процессы диффузии и фильтрации. Капилляры не способны к сокращениям, их диаметр изменяется пассивно вслед за колебаниями давления в пре- и посткапиллярных резистивных сосудах и сосудах-сфинктерах.

    5. Емкостные сосуды - это главным образом вены. Благодаря высокой растяжимости вены способны вмещать или выбрасывать большие обьемы крови без существенных изменений параметров кровотока, в связи с этим они играют роль депо крови.

    6. Шунтирующие сосуды - артерио-венозные анастомозы. Когда эти сосуды открыты, кровоток через капилляры либо уменьшается, либо полностью прекращается .

    Гемодинамические основы. Течение крови по сосудам

    Движущей силой кровотока является разница давления между различными отделами сосудистого русла. Кровь течет из области высокого давления к области низкого давления, из артериального отдела с высоким давлением в венозный отдел с низким давлением. Этот градиент давления преодолевает гидродинамическое сопротивление, обусловленное внутренним трением между слоями жидкости и между жидкостью и стенками сосуда, которое зависит от размеров сосуда и вязкости крови.

    Течение крови через какой-либо участок сосудистой системы можно описать формулой объемной скорости кровотока. Обьемная скорость кровотока -это обьем крови, протекающий через поперечное сечение сосуда в единицу времени (мл/с). Обьемная скорость кровотока Q отражает кровоснабжение того или иного органа.

    Q = (P2-P1)/R, где Q - объемная скорость кровотока, (P2-P1) - разность давлений на концах участка сосудистой системы, R - гидродинамическое сопротивление.

    Объемную скорость кровотока можно вычислить, исходя из линейной скорости кровотока через поперечное сечение сосуда и площади этого сечения:

    где V - линейная скорость кровотока через поперечное сечение сосуда, S - площадь поперечного сечения сосуда.

    В соответствии с законом непрерывности потока объемная скорость кровотока в системе трубок различного диаметра постоянна независимо от поперечного сечения трубки. Если через трубки протекает жидкость с постоянной объемной скоростью, то скорость движения жидкости в каждой трубке обратно пропорциональна площади ее поперечного сечения:

    Q = V1 х S1 = V2 х S2.

    Вязкость крови - это свойство жидкости, благодаря которому в ней возникают внутренние силы, влияющие на ее течение. Если текущая жидкость соприкасается с неподвижной поверхностью (например, при движении в трубке), то слои жидкости перемещаются с различными скоростями. В результате между этими слоями возникает напряжение сдвига: более быстрый слой стремится вытянуться в продольном направлении, а более медленный задерживает его. Вязкость крови определяется прежде всего форменными элементами и, в меньшей степени, белками плазмы. У человека вязкость крови равна 3-5 отн.ед., вязкость плазмы - 1,9-2,3 отн. ед. Для кровотока имеет большое значение тот факт, что вязкость крови в некоторых отделах сосудистой системы меняется. При низкой скорости кровотока вязкость увеличивается более чем до 1000 отн. ед.

    В физиологических условиях почти во всех отделах кровеносной системы наблюдается ламинарное течение крови. Жидкость движется как бы цилиндрическими слоями, причем все частицы ее перемещаются только параллельно оси сосуда. Отдельные слои жидкости передвигаются относительно друг друга, причем слой, непосредственно прилегающий к стенке сосуда, остается неподвижным, по этому слою скользит второй слой, по нему — третий и так далее. В результате образуется параболический профиль распределения скоростей с максимумом в центре сосуда. Чем меньше диаметр сосуда, тем ближе центральные слои жидкости к его неподвижной стенке и тем больше они тормозятся в результате вязкостного взаимодействия с этой стенкой. Вследствие этого в мелких сосудах средняя скорость кровотока ниже. В крупных сосудах центральные слои расположены дальше от стенок, поэтому по мере приближения к продольной оси сосуда эти слои скользят относительно друг друга со все большей скоростью. В результате средняя скорость кровотока значительно возрастает .

    При определенных условиях ламинарное течение превращается в турбулентное, для которого характерно наличие завихрений, в которых частички жидкости перемещаются не только параллельно оси сосуда, но и перпендикулярно ей. При турбулентном течении объемная скорость кровотока пропорциональна не градиенту давления, а квадратному корню из нее. Для увеличения обьемной скорости вдвое необходимо повысить давление примерно в 4 раза. Поэтому при турбулентном кровотоке нагрузка на сердце значительно увеличивается. Турбуленция потока может возникать вследствие физиологических причин (расширение, бифуркация, изгиб сосуда), но часто является и признаком патологических изменений, таких как стеноз, патологическая извитость и др. При возрастании скорости кровотока или снижении вязкости крови течение может стать турбулентным во всех крупных артериях. В области извитости профиль скорости деформируется за счет ускорения частиц, движущихся по наружному краю сосуда, минимальная скорость движения отмечается в центре сосуда, профиль скорости имеет двояковыпуклую форму. В зонах бифуркаций частицы крови отклоняются от прямолинейной траектории, образуют завихрения, профиль скорости уплощается.

    Методы ультразвукового исследования сосудов

    1. Ультразвуковая спектральная допплерография (УЗДГ) - оценка спектра скоростей кровотока.

    2. Дуплексное сканирование - режим, при котором одновременно используются В-режим и УЗДГ.

    3. Триплексное сканирование - одновременно применяются В-режим, цветное допплеровское картирование (ЦДК) и УЗДГ.

    Цветовое картирование осуществляется путем цветового кодирования различных физических характеристик движущихся частиц крови. В ангиологии используется термин ЦДК по скорости (ЦДКС). ЦДКС обеспечивает формирование в реальном времени обычного двумерного изображения в серой шкале, на которое накладывается информация о допплеровском сдвиге частот, представленная в цвете. Положительный сдвиг частот принято представлять красным цветом, отрицательный - синим. При ЦДКС кодирование направления и скорости потока тонами различного цвета облегчает поиск сосудов, позволяет быстро дифференцировать артерии и вены, проследить их ход и расположение, судить о направлении кровотока .

    ЦДК по энергии дает информацию об интенсивности потока, а не о средней скорости элементов потока. Особенность энергетического режима - возможность получать изображение мелких, разветвленных сосудов, которые, как правило, не визуализуруются при ЦДК.

    Принципы ультразвукового исследования артерий в норме

    В-режим: просветы сосудов имеют эхонегативную структуру и ровный контур внутренней стенки.

    В режиме ЦДК необходимо учитывать следующее: шкала скорости кровотока должна соответствовать диапазону скоростей, характерных для исследуемого сосуда; величина угла между анатомическим ходом сосуда и направлением ультразвуковоголуча датчика должна составлять 90 градусов и более, что обеспечивается изменением плоскости сканирования и общего угла наклона ультразвуковыхлучей с помощью прибора.

    В режиме ЦДК по энергии определяется равномерное однородное окрашивание потока в просвете артерии с четкой визуализацией внутреннего контура сосуда.

    При анализе спектра допплеровского сдвига частот (СДСЧ) контрольный объем устанавливается в центр сосуда так, чтобы угол между ультразвуковымлучом и анатомическим ходом сосуда составлял менее 60 градусов.

    в В-режиме оцениваются следующие показатели:

    1) проходимость сосуда (проходим, окклюзирован);

    2) геометрия сосуда (прямолинейность хода, наличие деформаций);

    3) величина пульсации сосудистой стенки (усиление, ослабление, отсутствие);

    4) диаметр сосуда;

    5) состояние сосудистой стенки (толщина, структура, однородность);

    6) состояние просвета сосуда (наличие атеросклеротических бляшек, тромбов, расслоения, артерио-венозных соустий и др.);

    7) состояние периваскулярных тканей (наличие патологических образований, зон отека, костных компрессий).

    При изучении изображения артерии в режиме ЦДК оцениваются:

    1) проходимость сосуда;

    2) сосудистая геометрия;

    3) наличие дефектов заполнения на цветовой картограмме;

    4) наличие зон турбулентности;

    5) характер распределения цветового паттерна.

    При проведении УЗДГ оцениваются качественные и количественные параметры.

    Качественные параметры;

    Форма допплеровской кривой,

    Наличие спектрального окна.

    Количественные параметры:

    Пиковая систолическая скорость кровотока (S);

    Конечная диастолическая скорость кровотока (D);

    Усредненная по времени максимальная скорость кровотока (TAMX);

    Усредненная по времени средняя скорость кровотока (Fmean, TAV);

    Индекс периферического сопротивления, или индекс резистивности, или индекс Pource-lot (RI). RI = S — D / S;

    Пульсационный индекс, или индекс пульсации, или индекс Gosling (PI). PI = S-D / Fmean;

    Индекс спектрального расширения (SBI). SBI = S - Fmean / S х 100%;

    Систолодиастолическое соотношение (SD).

    Спектрограмму характеризует множество количественных показателей, однако большинство исследователей предпочитают анализ допплеровского спектра на основе не абсолютных, а относительных индексов .

    Существуют артерии с низким и высоким периферическим сопротивлением. В артериях с низким периферическим сопротивлением (внутренние сонные, позвоночные, общие и наружные сонные артерии, интракраниальные артерии) на допплеровской кривой положительное направление кровотока в норме сохраняется в течение всего сердечного цикла и дикротический зубец не достигает изолинии.

    В артериях с высоким периферическим сопротивлением (плече-головной ствол, подключичная артерия, артерии крнечностей) в норме в фазу дикротического зубца кровоток меняет направление на противоположное.

    Оценка формы допплеровской кривой

    В артериях с низким периферическим сопротивлением на кривой пульсовой волны выделяются следующие пики:

    1 - систолический пик (зубец): соответствует максимальному возрастанию скорости кровотока в период изгнания;

    2 - катакротический зубец: соответствует началу периода расслабления;

    3 - дикротический зубец: характеризует период закрытия аортального клапана;

    4 - диастолическая фаза: соответствует фазе диастолы.

    В артериях с высоким периферическим сопротивлением на кривой пульсовой волны выделяются:

    1 - систолический зубец: максимальное возрастание скорости в период изгнания;

    2 - ранний диастолический зубец: соответствует фазе ранней диастолы;

    3 - волна конечно-диастолического возврата: характеризует фазу диастолы.

    Комплекс интима-медиа (КИМ) имеет однородную эхоструктуру и эхогенность и состоит из двух четко дифференцируемых слоев: эхопозитивной интимы и эхонегативной медии. Поверхность его ровная. Толщина КИМ измеряется в общей сонной артерии на 1-1,5 см проксимальнее бифуркации по задней (по отношению к датчику) стенке артерии; во внутренней сонной и наружной сонной артериях - на 1 см дистальнее области бифуркации. При диагностическом ультразвуковом исследовании оценивается толщина КИМ только в общей сонной артерии. Толщина КИМ во внутренней и наружной сонных артериях измеряется при динамическом наблюдении за течением заболевания или с целью оценки эффективности терапии.

    Определение степени (процента) стеноза

    1. По площади поперечного сечения (Sa) сосуда:

    Sa = (A1 - A2) х 100% /A1.

    2. По диаметру сосуда (Sd):

    Sd = (D1- D2) х 100% / D1,

    где A1- истинная площадь поперечного сечения сосуда, A2 - проходимая площадь поперечного сечения сосуда, D1- истинный диаметр сосуда, D2 - проходимый диаметр стенозированного сосуда.

    Процент стеноза, определяемый по площади, более информативный, так как учитывает геометрию бляшки и превышает процент стеноза по диаметру на 10-20% .

    Типы кровотока в артериях

    1. Магистральный тип кровотока. Выявляется при отсутствии патологических изменений или при стенозе артерии менее 60% по диаметру, на кривой имеются все перечисленные пики.

    При сужении просвета артерии менее 30% регистрируется нормальная форма допплеровской волны и показатели скорости кровотока.

    При стенозе артерии от 30 до 60% фазный характер кривой сохраняется. Отмечается увеличение пиковой систолической скорости.

    Значение показателя отношения систолической скорости кровотока на участке стеноза к систолической скорости кровотока в пре- и постстенотическом участке, равное 2-2,5, является критической точкой для разграничения стенозов до 49% и более (рис.1, 2).

    2. Магистрально-измененный тип кровотока. Регистрируется при стенозе от 60 до 90% (гемодинамически значимом) дистальнее места стеноза. Характеризуется уменьшением площади спектрального «окна»; притуплением или расщеплением систолического пика; уменьшением или отсутствием ретроградного кровотока в ранней диастоле; локальным увеличением скорости (в 2-12,5 раза) на участке стеноза и непосредственно за ним (рис. 3).

    3. Коллатеральный тип кровотока. Определяется при стенозе более 90% (критическом) или окклюзии дистальнее места критического стеноза или окклюзии. Характеризуется практически полным отсутствием различий между систолической и диастолической фазами, малодифференцированной формой волны; закруглением систолического пика; удлинением времени подъема и спада скорости кровотока, низкими параметрами кровотока; исчезновением обратного кровотока в период ранней диастолы (рис. 4) .

    Особенности гемодинамики в венах

    Колебания скорости кровотока в магистральных венах связаны с дыханием и сокращениями сердца. Эти колебания усиливаются по мере приближения к правому предсердию. Колебания давления и объема в венах, расположенных около сердца (венный пульс), записываются неинвазивными методами (с помощью датчика давления) .

    Особенности исследования венозной системы

    Исследование венозной системы проводят в В-режиме, цветовом и спектральном допплеровском режимах.

    Исследование вен в В-режиме. При полной проходимости просвет вены выглядит однородно эхонегативным. От окружающих тканей просвет отграничен эхопозитивной линейной структурой - сосудистой стенкой. В отличие от стенки артерий структура венозной стенки однородна и визуально не дифференцируется на слои. Сдавливание просвета вены датчиком приводит к полной компрессии просвета. В случае частичного или полного тромбоза просвет вены сдавливается датчиком не полностью или не сдавливается вовсе.

    При проведении УЗДГ анализ осуществляется так же, как в артериальной системе. В повседневной клинической практике количественные параметры венозного кровотока почти не используются. Исключение составляет церебральная венозная гемодинамика. При отсутствии патологии линейные параметры венозной циркуляции относительно постоянны. Их повышение или снижение является маркёром венозной недостаточности.

    При исследовании венозной системы, в отличие от артериальной, по данным УЗДГ оценивается меньшее количество параметров:

    1) форма допплеровской кривой (фазности пульсовой волны) и ее синхронизация с актом дыхания;

    2) пиковая систолическая и усредненная по времени средняя скорость кровотока;

    3) изменение характера кровотока (направления, скорости) при проведении функциональных нагрузочных проб.

    В венах, расположенных вблизи сердца (верхняя и нижняя полые, яремные, подключичная), выделяют 5 основных пиков:

    А-волна - положительная: связана с сокращением предсердий;

    С-волна - положительная: соответствует выпячиванию атриовентрикулярного клапана в правое предсердие во время изоволюметрического сокращения желудочка;

    Х-волна - отрицательная: связана со смещением плоскости клапанов к верхушке во время периода изгнания;

    V-волна - положительная: связана с расслаблениием правого желудочка, атриовентрикулярные клапаны сначала закрыты, давление в венах быстро нарастает;

    Y-волна - отрицательная: клапаны открываются, и кровь поступает в желудочки, давление падает (рис. 5).

    В венах верхних и нижних конечностей на допплеровской кривой выделяют два, иногда три основных пика, соответствующих фазе систолы и фазе диастолы (рис. 6) .

    В большинстве случаев венозный кровоток синхронизирован с дыханием, то есть при вдохе кровоток снижается, при выдохе — возрастает, однако отсутствие синхронизации с дыханием не является абсолютным признаком патологии.

    При ультразвуковом исследовании вен применяется два вида функциональных проб;

    1. Проба дистальной компрессии - оценка проходимости венозного сегмента дистальнее места расположения датчика. В допплеровском режиме в случае проходимости сосуда при сжатии мышечного массива дистальнее места расположения датчика отмечается кратковременное увеличение линейной скорости кровотока, при прекращении сжатия скорость кровотока возвращается к исходному значению. При окклюзии просвета вены вызванный сигнал отсутствует.

    2. Пробы для оценки состоятельности клапанного аппарата (с задержкой дыхания). При удовлетворительном функционировании клапанов в ответ на нагрузочный стимул отмечается прекращение кровотока дистальнее места расположения клапана. При клапанной недостаточности в момент пробы появляется ретроградный кровоток в сегменте вены дистальнее клапана. Величина ретроградного кровотока прямо пропорциональна степени клапанной недостаточности .

    Изменения параметров гемодинамики при поражениях сосудистой системы

    Синдром при нарушении проходимости артерии различной степени: стенозы и окклюзии. По влиянию на гемодинамику деформации близки к стенозам. До зоны деформации может регистрироваться снижение линейной скорости кровотока, индексы периферического сопротивления могут быть повышены. В зоне деформации отмечается повышение скорости кровотока, чаще при изгибах, или разнонаправленный турбулентный поток — в случае петель. За зоной деформации скорость кровотока возрастает, индексы периферического сопротивления могут снижаться. Так как деформации длительно формируются, развивается адекватная коллатеральная компенсация.

    Синдром артерио-венозного шунтирования. Возникает при наличии артерио-венозных фистул, мальформаций. Изменения кровотока отмечаются в артериальном и венозном русле. В артериях проксимальнее места шунтирования регистрируется повышение линейной скорости кровотока, как систолической, так и диастолической, индексы периферического сопротивления снижены. В месте шунтирования отмечается турбулентный поток, его величина зависит от размера шунта, диаметра приводящего и дренирующего сосудов. В дренирующей вене скорость кровотока повышена, часто отмечается «артериализация» венозного кровотока, проявляющаяся «пульсирующей» допплеровской кривой.

    Синдром артериальной вазодилатации. Приводит к снижению индексов периферического сопротивления и возрастанию скорости кровотока в систолу и диастолу. Развивается при системной и локальной гипотензии, гиперперфузионном синдроме, «централизации» кровообращения (шоковые и терминальные состояния). В отличие от синдрома артерио-венозного шунтирования, при синдроме артериальной вазодилатации не возникает характерных расстройств венозной гемодинамики .

    Таким образом, знание особенностей строения стенок сосудов, их функций, особенностей гемодинамики в артериях и венах, методов и принципов ультразвукового исследования сосудов в норме - необходимое условие для правильной интерпретации параметров гемодинамики при поражениях сосудистой системы.

    Л и т е р а т у р а

    1. Лелюк С.Э., Лелюк В.Г. // Ультразвук. диагностика. — 1995. — №3. — С. 65—77.

    2. Млюк В.Г., Млюк С.Э . Основные принципы гемодинамики и ультразвукового исследования сосудов: клинич. рук-во по ультразвуковой диагностике / под ред. Митькова В.В. — М.: Видар, 1997. — Т. 4. — С. 185—220.

    3. Основы клинической интерпретации данных ультразвуковых ангиологических исследований: учеб.-метод. пособие / Лелюк В.Г., Лелюк С.Э. - М., 2005. - 38 с.

    4. Принципы ультразвуковой диагностики поражений сосудистой системы: учеб.-метод. пособие / Лелюк В.Г., Лелюк С.Э. - М., 2002. - 43 с.

    5.Ультразвуковая диагностика в абдоминальной и сосудистой хирургии / под ред. Г.И. Кунцевич. - Мн., 1999. — 256 с.

    6. Ультразвуковая диагностика болезней вен / Д.А. Чуриков, А.И. Кириенко. — М., 2006. - 96 с.

    7. Ультразвуковая ангиология / Лелюк В.Г., Лелюк С.Э. — 2-е изд., доп. и перер. - М., 2003. - 336 с.

    8. Ультразвуковая оценка периферической венозной системы в норме и при различных патологических процессах: учеб.-метод. пособие / Лелюк В.Г., Лелюк С.Э. - М., 2004. - 40 с.

    9. Харченко В.П., Зубарев А.Р., Котляров П.М . Ультразвуковая флебология. - М., 2005. - 176 с.

    10. Bots M.L., Hofman A., GroDPee D.E. // Athenoscler. Thtomb. — 1994. — Vol. 14, N 12. — P. 1885—1891.

    Медицинские новости. - 2009. - №13. - С. 12-16.

    Внимание! Статья адресована врачам-специалистам. Перепечатка данной статьи или её фрагментов в Интернете без гиперссылки на первоисточник рассматривается как нарушение авторских прав.

    Здравствуйте, Евгений Анатольевич. 14.02.2013 проходила УЗИ вен нижних конечностей с допплерографией и цветовым картрированием. СПРАВА. ГЛУБОКИЕ ВЕНЫ, Задние и передние большеберцовые, малоберцовые вены проходимы, варикозно расширены, клапаны несостоятельны. Подколенная вена проходима, клапан состоятелен, кровоток фазный, синхронизированный с актом дыхания. Суральные вены расширены, кровоток фрагментальный. Поверхностная и глубокая, общая бедренные вены проходимы, клапаны состоятельны, кровоток фазный, синхронизированный с актом дыхания. Наружная и общая подвздошные вены проходимы, клапаны состоятельны, кровоток фазный, синхронизированный с актом дыхания. ПОДКОЖНЫЕ ВЕНЫ. Большая подкожная вена проходима, варикозно расширена на всем протяжении, до 7-8 мм в диаметре, при проведении пробы Вальсавы регистрируется патологический сброс крови на всем протяжении бедра, притоки БПВ с области сафено-феморального соустья и сафено-феморальное соустье расширены, остиальный клапан несостоятелен. Малая подкожная вена проходима, притоки МПВ в области сафено-поплитеального соустья и сафено-поплиательное соустье состоятельны, клапаны состоятельны. Перфорантные вены расширены в нижней трети и в средней трети голени на 13 и 21 см до 4,6-5,2 мм, при проведении пробы дистальной компрессии тип кровотока ретроградный, клапаны несостоятельны. СЛЕВА. ГЛУБОКИЕ ВЕНЫ. Задние и передние большеберцовые, малоберцовые вены проходимы,варикозно расширены, клапаны не состоятельны. Подколенная вена проходима, клапан состоятелен, кровоток фазный, синхронизированный с актом дыхания. Суральные вены расширены, кровоток пристеночный. Поверхностная и глубокая, общая бедренные вены проходимы, клапаны состоятельны, кровоток фазный,синхронизированный с актом дыхания. Наружная и общая подвздошные вены проходимы, клапаны состоятельны, кровоток фазный, синхронизированный с актом дыхания. ПОДКОЖНЫЕ ВЕНЫ. Большая подкожная вена проходима, до 4,5 мм в диаметре, при проведении пробы Вальсавы патологический рефлюкс не зарегистрирован. Варикозно расширена на всем протяжении голени, притоки БПВ в области сафено-феморального соустья и сафено-феморальное соустье не расширены, остиальный клапан состоятелен, клапаны состоятельны. Малая подкожная вена проходима, притоки МПВ в области сафено-поплитеального соустья и сафено-поплитеальное соустье состоятельны, клапаны состоятельны. Перфорантные вены расширены в средней трети голени на 19 и 22 см до 4,8-5,3 мм, при проведении пробы дистальной компрессии тип кровотока ретроградный, клапаны несостоятельны. ЗАКЛЮЧЕНИЕ: УЗ-ПРИЗНАКИ варикозного расширения подкожных вен в бассейне БПВ с обеих сторон(больше выраженного справа); несостоятельности клапанов перфорантных вен голени; тромбоза суральных вен с признаками реканализации. Обязательно ли нужна хирургическое вмешательство? Или можно вылечить какими нибудь препаратами? Пожалуйста, помогите нуждаюсь в вашей помощи и жду ответа. Спасибо!

    5169 0

    Задачи инструментальной диагностики ХВН.

    • Оценка состояния глубоких вен, их проходимости и функций клапанного аппарата.
    • Обнаружение рефлюкса крови через остиальные клапаны большой и малой подкожных вен.
    • Определение протяжённости поражения клапанного аппарата стволов подкожных вен, а также уточнение особенностей их анатомического строения.
    • Выявление и точная локализация недостаточных перфорантных вен.

    Основой современной диагностики ХВН служат ультразвуковые способы — допплерография и ангиосканирование.

    Ультразвуковая допплерография основана на эффекте Допплера - изменении частоты звукового сигнала при отражении его от движущегося объекта (в данном случае - от форменных элементов крови). Разницу между генерированной и отражённой волнами регистрируют в виде звукового или графического сигнала.

    Обследование проводят в горизонтальном и вертикальном положениях пациента. Стандартными «окнами» для исследования служат позадилодыжечная область (лоцируют задние большеберцовые вены), подколенная ямка (лоцируют подколенную и малую подкожные вены) и верхняя треть бедра (зона локации бедренной и большой подкожной вен). Изучают спонтанный и стимулированный кровоток по глубоким и подкожным венам.

    Спонтанный (антеградный) кровоток определяют в венах крупного калибра. Его отличительная особенность - связь с дыхательными движениями грудной клетки, поэтому его звук напоминает шум ветра, усиливающегося в фазу выдоха и ослабевающего при вдохе. Стимулированный венозный кровоток необходим для оценки функций клапанного аппарата магистральных вен. При исследовании проксимально расположенных сосудов (бедренной и большой подкожной вен) используют пробу Вальсальвы. У здоровых людей во время вдоха происходит ослабление венозного шума, в момент натуживания он полностью исчезает, а при последующем выдохе резко усиливается. На недостаточность клапанов обследуемой вены указывает шум ретроградной волны крови, возникающий при натуживании пациента.

    Состояние берцовых, подколенной и малой подкожной вен оценивают с помощью проксимальной и дистальной компрессионных проб. В первом случае выполняют мануальную компрессию сегмента конечности выше ультразвукового датчика. При этом повышается внутривенозное давление и в случае недостаточности клапанов регистрируется сигнал ретроградного потока крови. При дистальной компрессионной пробе сжимают сегмент конечности ниже датчика. Это приводит сначала к появлению антеградной, а после декомпрессии ретроградной волны крови.

    Ультразвуковое ангиосканирование позволяет получать изображение исследуемых вен в реальном масштабе времени. Ценность исследования возрастает при одновременном использовании режимов допплерографии или цветового допплеровского картирования. Стандартные «окна» и пробы для проведения исследования венозной системы аналогичны описанным выше. Ретроградный кровоток определяют при реверсии звукового или графического допплеровского сигнала или на основании изменения цвета потока крови при цветовом картировании.

    На сегодняшний день ультразвуковое ангиосканирование - наиболее информативный метод диагностики, позволяющий визуализировать практически всё венозное русло от вен стопы до нижней полой вены. Результаты исследования позволяют с высокой степенью точности установить причину хронической венозной недостаточности, обнаружив последствия венозного тромбоза в глубоких венах (окклюзия вены или реканализация её просвета) или, напротив, неизменённую их стенку с состоятельными клапанами. При варикозной болезни определяют протяжённость рефлюкса крови по стволам магистральных поверхностных вен. Помимо этого, ультразвуковое ангиосканирование даёт возможность достоверно локализовать недостаточные перфорантные вены (рис. 1), что облегчает их поиск во время хирургического вмешательства.

    Рис. 1. Ультразвуковая ангиосканограмма пациента с варикозной болезнью. Локируется несостоятельная перфорантная вена, соединяющая глубокую вену с поверхностной.

    Радионуклидная флебография. Отличительная черта этого малоинвазивного исследования - возможность получения информации об особенностях функционирования венозного русла нижних конечностей. Исследование проводят в вертикальном положении пациента. После наложения над лодыжками жгута, перекрывающего просвет подкожных вен, в вену тыла стопы вводят радионуклид. Затем пациент начинает ритмично сгибать и разгибать стопу, не отрывая пятки от опоры. Такая имитация ходьбы «включает» мышечно-венозную помпу голени, и радиофармпрепарат начинает перемещаться по глубоким венам. Детектор гамма-камеры регистрирует его движение (рис. 2), фиксируя перфорантный сброс в поверхностные вены, зоны задержки изотопа (сегменты с клапанной недостаточностью) или его отсутствия (участки окклюзии). Большое диагностическое значение имеет скорость эвакуации препарата из разных отделов венозного русла, позволяющая судить о масштабе нарушения венозного оттока в той или иной зоне.

    Рис. 2. Радиоизотопная флебосцинтиграмма. Снимок пациента с левосторонней окклюзией подвздошных вен. Отток крови из поражённой конечности по коллатералям в надлобковой области осуществляется через правые подвздошные вены.

    Рентгеноконтрастная флебография. Для её выполнения необходимо введение в магистральные вены водорастворимого рентгеноконтрастного препарата. Этот способ считают одним из самых информативных, но вместе с тем достаточно травматичным и небезопасным для больного (аллергические реакции на контрастное вещество, венозные тромбозы, гематомы). Рентгенофлебография даёт наиболее полную картину анатомо-морфологических особенностей венозного русла, поэтому она по-прежнему незаменима при планировании реконструктивных операций на глубоких венах (пластика клапанов, транспозиция вен и пр.) у больных с посттромбофлебитической болезнью. При варикозной болезни в настоящее время этот метод исследования не применяют, поскольку информации, получаемой при УЗИ и радионуклидном исследовании, достаточно для определения тактики лечения больного.

    Савельев В.С.

    Хирургические болезни