Момент силы. Формула

Враща́тельное движе́ние - вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинетические характеристики:

Вращение твердого тела, как целого характеризуется углом , измеряющегося в угловых градусах или радианах, угловой скоростью (измеряется в рад/с)и угловым ускорением(единица измерения - рад/с²).

При равномерном вращении (T оборотов в секунду):

Частота вращения - число оборотов тела в единицу времени.-

Период вращения - время одного полного оборота. Период вращения T и его частота связаны соотношением.

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы измеряется в ньютон-метрах. 1 Н·м - момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса замкнутой системы сохраняется

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) - один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

16.Уравнение динамики вращательного движения. Момент инерции.

Основное уравнение динамики вращательного движения материальной точки - угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

М = E*J или E = M/J

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².Обозначение: I или J.

Различают несколько моментов инерции - в зависимости от многообразия, от которого отсчитывается расстояние точек.

Свойства момента инерции:

1.Момент инерции системы равен сумме момента инерции её частей.

2.Момент инерции тела является величиной, иманентно присущей этому телу.

Момент инерции твердого тела - это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.

Формула момента инерции:

Теорема Штейнера:

Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Центральный момент инерции (или момент инерции относительно точки O) - это величина

.

В физике рассмотрение задач с вращающимися телами или системами, которые находятся в равновесии, осуществляется с использованием концепции "момент силы". В этой статье будет рассмотрена формула момента силы, а также ее использование для решения указанного типа задач.

в физике

Как было отмечено во введении, в данной статье пойдет речь о системах, которые могут вращаться либо вокруг оси, либо вокруг точки. Рассмотрим пример такой модели, изображенной на рисунке ниже.

Мы видим, что рычаг серого цвета закреплен на оси вращения. На конце рычага имеется черный кубик некоторой массы, на который действует сила (красная стрелка). Интуитивно понятно, что результатом воздействия этой силы будет вращение рычага вокруг оси против часовой стрелки.

Моментом силы называется величина в физике, которая равна векторному произведению радиуса, соединяющего ось вращения и точку приложения силы (зеленый вектор на рисунке), и самой внешней силе. То есть силы относительно оси записывается следующим образом:

Результатом этого произведения будет вектор M¯. Направление его определяют, исходя из знания векторов-множителей, то есть r¯ и F¯. Согласно определению векторного произведения, M¯ должен быть перпендикулярен плоскости, образованной векторами r¯ и F¯, и направлен в соответствии с правилом правой руки (если четыре пальца правой руки расположить вдоль первого умножаемого вектора в направлении к концу второго, то отставленный вверх большой палец укажет, куда направлен искомый вектор). На рисунке можно видеть, куда направлен вектор M¯ (синяя стрелка).

Скалярная форма записи M¯

На рисунке в предыдущем пункте сила (красная стрелка) действует на рычаг под углом 90 o . В общем же случае она может быть приложена под совершенно любым углом. Рассмотрим изображение ниже.

Здесь мы видим, что на рычаг L сила F уже действует под некоторым углом Φ. Для этой системы формула момента силы относительно точки (показана стрелкой) в скалярном виде примет форму:

M = L * F * sin(Φ)

Из выражения следует, что момент силы M будет тем больше, чем ближе направление действия силы F к углу 90 o по отношению к L. Наоборот, если F действует вдоль L, то sin(0) = 0, и сила не создает никакого момента (M = 0).

При рассмотрении момента силы в скалярной форме часто пользуются понятием "рычага силы". Эта величина представляет собой расстояние между осью (точкой вращения) и вектором F. Применяя это определение к рисунку выше, можно сказать, что d = L * sin(Φ) - это рычаг силы (равенство следует из определения тригонометрической функции "синус"). Через рычаг силы формулу для момента M можно переписать так:

Физический смысл величины M

Рассматриваемая физическая величина определяет способность внешней силы F оказывать вращательное воздействие на систему. Чтобы привести тело во вращательное движение, ему необходимо сообщить некоторый момент M.

Ярким примером этого процесса является открывание или закрывание двери в комнату. Взявшись за ручку, человек прикладывает усилие и поворачивает дверь на петлях. Каждый сможет это сделать. Если же попытаться открыть дверь, воздействуя на нее вблизи петель, то потребуется приложить большие усилия, чтобы сдвинуть ее с места.

Другим примером является откручивание гайки ключом. Чем короче будет этот ключ, тем труднее выполнить поставленную задачу.

Указанные особенности демонстрирует формула момента силы через плечо, которая была приведена в предыдущем пункте. Если M считать постоянной величиной, то чем меньше d, тем большую F следует приложить для создания заданного момента силы.

Несколько действующих сил в системе

Выше были рассмотрены случаи, когда на систему, способную к вращению, действует всего одна сила F, но как быть, когда таких сил несколько? Действительно, эта ситуация является более частой, поскольку на систему могут действовать силы различной природы (гравитационная, электрическая, трение, механическая и другие). Во всех этих случаях результирующий момент силы M¯ может быть получен с помощью векторной суммы всех моментов M i ¯, то есть:

M¯ = ∑ i (M i ¯), где i - номер силы F i

Из свойства аддитивности моментов следует важный вывод, который получил название теоремы Вариньона, названной так по фамилии математика конца XVII - начала XVIII века - француза Пьера Вариньона. Она гласит: "Сумма моментов всех сил, оказывающих воздействие на рассматриваемую систему, может быть представлена в виде момента одной силы, которая равна сумме всех остальных и приложена к некоторой точке". Математически теорему можно записать так:

∑ i (M i ¯) = M¯ = d * ∑ i (F i ¯)

Эта важная теорема часто используется на практике для решения задач на вращение и равновесие тел.

Совершает ли работу момент силы?

Анализируя приведенные формулы в скалярном или векторном виде, можно прийти к выводу, что величина M - это некоторая работа. Действительно, ее размерность равна Н*м, что в СИ соответствует джоулю (Дж). На самом деле момент силы - это не работа, а лишь величина, которая способна ее совершить. Чтобы это произошло, необходимо наличие кругового движения в системе и продолжительного во времени действия M. Поэтому формула работы момента силы записывается в следующем виде:

В этом выражении θ - это угол, на который было произведено вращение моментом силы M. В итоге единицу работы можно записать как Н*м*рад или же Дж*рад. Например, значение 60 Дж*рад говорит о том, что при повороте на 1 радиан (приблизительно 1/3 окружности) создающая момент M сила F совершила работу в 60 джоулей. Эту формулу часто используют при решении задач в системах, где действуют силы трения, что будет показано ниже.

Момент силы и момент импульса

Как было показано, воздействие на систему момента M приводит к появлению в ней вращательного движения. Последнее характеризуется величиной, которая получила название "момент импульса". Его можно вычислить, применяя формулу:

Здесь I - это момент инерции (величина, которая играет такую же роль при вращении, что и масса при линейном движении тела), ω - угловая скорость, она связана с линейной скоростью формулой ω = v/r.

Оба момента (импульса и силы) связаны друг с другом следующим выражением:

M = I * α, где α = dω / dt - угловое ускорение.

Приведем еще одну формулу, которая важна для решения задач на работу моментов сил. С помощью этой формулы можно вычислить кинетическую энергию вращающегося тела. Она выглядит так:

Равновесие нескольких тел

Первая задача связана с равновесием системы, в которой действуют несколько сил. На рисунке ниже приведена система, на которую действуют три силы. Необходимо рассчитать, какой массы предмет необходимо подвесить к этому рычагу и в какой точке это следует сделать, чтобы данная система находилась в равновесии.

Из условия задачи можно понять, что для ее решения следует воспользоваться теоремой Вариньона. На первую часть задачи можно ответить сразу, поскольку вес предмета, которые следует подвесить к рычагу, будет равен:

P = F 1 - F 2 + F 3 = 20 - 10 + 25 = 35 Н

Знаки здесь выбраны с учетом того, что сила, вращающая рычаг против часовой стрелки, создает отрицательный момент.

Положение точки d, куда следует подвесить этот вес, вычисляется по формуле:

M 1 - M 2 + M 3 = d * P = 7 * 20 - 5 * 10 + 3 * 25 = d * 35 => d = 165/35 = 4,714 м

Отметим, что с помощью формулы момента силы тяжести мы вычислили эквивалентную величину M той, которую создают три силы. Чтобы система находилась в равновесии, необходимо подвесить тело весом 35 Н в точке 4,714 м от оси с другой стороны рычага.

Задача с движущимся диском

Решение следующей задачи основано на использовании формулы момента силы трения и кинетической энергии тела вращения. Задача: дан диск радиуса r = 0,3 метра, который вращается со скоростью ω = 1 рад/с. Необходимо рассчитать, какое расстояние способен он пройти по поверхности, если коэффициент трения качения равен μ = 0,001.

Эту задачу легче всего решить, если воспользоваться законом сохранения энергии. Мы располагаем начальной кинетической энергией диска. Когда он начнет катиться, то вся эта энергия расходуется на нагрев поверхности за счет действия силы трения. Приравнивая обе величины, получим выражение:

I * ω 2 /2 = μ * N/r * r * θ

Первая часть формулы - это кинетическая энергия диска. Вторая часть - это работа момента силы трения F = μ * N/r, приложенной к краю диска (M=F * r).

Учитывая, что N = m * g и I = 1/2m * r 2 , вычисляем θ:

θ = m * r 2 * ω 2 /(4 * μ * m * g) = r 2 * ω 2 /(4 * μ *g) = 0,3 2 * 1 2 /(4 * 0,001 * 9,81) = 2,29358 рад

Поскольку 2pi радиан соответствуют длине 2pi * r, тогда получаем, что искомое расстояние, которое пройдет диск, равно:

s = θ * r = 2,29358 * 0,3 = 0,688 м или около 69 см

Отметим, что на данный результат масса диска никак не влияет.

Когда решают задачи на перемещение объектов, то в ряде случаев пренебрегают их пространственными размерами, вводя понятие материальной точки. Для другого типа задач, в которых рассматриваются покоящиеся или вращающиеся тела, важно знать их параметры и точки приложения внешних сил. В этом случае речь идет о моменте сил относительно оси вращения. Рассмотрим этот вопрос в статье.

Понятие о моменте силы

Перед тем как приводить относительно оси вращения неподвижной, необходимо пояснить, о каком явлении пойдет речь. Ниже дан рисунок, на котором изображен гаечный ключ длиной d, к концу его приложена сила F. Нетрудно представить, что результатом ее воздействия будет вращение ключа против часовой стрелки и откручивание гайки.

Согласно определению, момент силы относительно оси вращения представляет собой произведение плеча (d в данном случае) на силу (F), то есть можно записать следующее выражение: M = d*F. Сразу же следует оговориться, что приведенная формула записана в скалярном виде, то есть она позволяет рассчитать абсолютное значение момента M. Как видно из формулы, единицей измерения рассматриваемой величины являются ньютоны на метр (Н*м).

- векторная величина

Как выше было оговорено, момент M в действительности представляет собой вектор. Для пояснения этого утверждения рассмотрим другой рисунок.

Здесь мы видим рычаг длиной L, который закреплен на оси (показано стрелкой). К его концу приложена сила F под углом Φ. Нетрудно себе представить, что эта сила будет вызывать подъем рычага. Формула для момента в векторной форме в этом случае запишется так: M¯ = L¯*F¯, здесь черта над символом означает, что рассматриваемая величина - это вектор. Следует пояснить, что L¯ направлен от к точке приложения силы F¯.

Приведенное выражение является векторным произведением. Его результирующий вектор (M¯) будет направлен перпендикулярно плоскости, образованной L¯ и F¯. Для определения направления момента M¯ существуют несколько правил (правой руки, буравчика). Чтобы не заучивать их и не путаться в порядке умножения векторов L¯ и F¯ (от него зависит направление M¯), следует запомнить одну простую вещь: момент силы будет направлен таким образом, что если смотреть с конца его вектора, то воздействующая сила F¯ будет вращать рычаг против часовой стрелки. Это направление момента условно принято за положительное. Если же система совершает вращение по часовой стрелки, значит, результирующий момент сил имеет отрицательное значение.

Таким образом, в рассматриваемом случае с рычагом L величина M¯ направлена вверх (от рисунка к читателю).

В скалярной форме формула для момента запишется в виде: M = L*F*sin(180-Φ) или M = L*F*sin(Φ) (sin(180-Φ) = sin(Φ)). Согласно определению синуса, можно записать равенство: M = d*F, где d = L*sin(Φ) (см. рисунок и соответствующий прямоугольный треугольник). Последняя формула является аналогичной той, которая была приведена в предыдущем пункте.

Проведенные выше вычисления демонстрируют, как работать с векторными и скалярными величинами моментов сил, чтобы не допустить ошибок.

Физический смысл величины M¯

Поскольку два рассмотренных в предыдущих пунктах случая связаны с вращательным движением, то можно догадаться, какой смысл несет момент силы. Если сила, действующая на материальную точку, является мерой увеличения скорости линейного перемещения последней, то момент силы - это мера ее вращательной способности применительно к рассматриваемой системе.

Приведем наглядный пример. Любой человек открывает дверь, взявшись за ее ручку. Также это можно сделать, если толкнуть дверь в зоне ручки. Почему никто не открывает ее, толкая в области петель? Очень просто: чем ближе к петлям приложена сила, тем труднее открыть дверь, и наоборот. Вывод предыдущего предложения следует из формулы для момента (M = d*F), откуда видно, что при M = const величины d и F находятся в обратной зависимости.

Момент силы - аддитивная величина

Во всех рассмотренных выше случаях имела место лишь одна действующая сила. При решении же реальных задач дело обстоит гораздо сложнее. Обычно на системы, которые вращаются или находятся в равновесии, действуют несколько сил кручения, каждая из которых создает свой момент. В этом случае решение задач сводится к нахождению суммарного момента сил относительно оси вращения.

Суммарный момент находится путем обычной суммы отдельных моментов для каждой силы, однако, следует не забывать использовать правильный знак для каждого из них.

Пример решения задачи

Для закрепления полученных знаний предлагается решить следующую задачу: необходимо вычислить суммарный момент силы для системы, изображенной на рисунке ниже.

Мы видим, что на рычаг длиной 7 м действуют три силы (F1, F2, F3), причем они имеют разные точки приложения относительно оси вращения. Поскольку направление сил перпендикулярно рычагу, то нет необходимости применять векторное выражение для момента кручения. Можно рассчитать суммарный момент M, используя скалярную формулу и не забывая о постановке нужного знака. Поскольку силы F1 и F3 стремятся повернуть рычаг против часовой стрелки, а F2 - по часовой стрелке, то момент вращения для первых будет положительным, а для второй - отрицательным. Имеем: M = F1*7-F2*5+F3*3 = 140-50+75 = 165 Н*м. То есть суммарный момент является положительным и направлен вверх (на читателя).

Лекция 3. Закон сохранения момента импульса.

Момент силы. Момент импульса материальной точки и механической системы. Уравнение моментов механической системы. Закон сохранения момента импульса механической системы.

Математические сведения.

Векторным произведением двух (ненулевых) векторов и называется вектор , который в декартовой системе координат (с ортами , , ) определяется по формуле

.

Величина (площадь прямоугольника на векторах и ).

Свойства векторного произведения.

1) Вектор направлен перпендикулярно к плоскости векторов и . Поэтому для любого вектора , лежащего в плоскости (линейно независимых) векторов и (т.е. ), получаем . Следовательно, если два ненулевых вектора и параллельны , то .

2) Производная по времени от векторного произведения – это вектор .

Действительно, (базисные векторы , , - постоянные)

Вектор момента импульса

Вектором момента импульса относительно точки О называется вектор

где - радиус-вектор из точки О, - вектор импульса точки. Вектор направлен перпендикулярно к плоскости векторов и . Точку О иногда называют полюсом . Найдем производную от вектора момента импульса по времени

.

Первое слагаемое в правой части: . Так как в инерциальной системе отсчета по второму закону Ньютона (в импульсной форме) , то второе слагаемое имеет вид .

Величина называется вектором момента силы относительно точки О.

Окончательно получаем:

производная от вектора момента импульса относительно точки равна моменту действующих сил относительно этой точки.

Свойства вектора момента силы.

.

3) Момент суммы сил равен сумме моментов каждой из сил .

4) Сумма моментов сил относительно точки

при переходе к другой точке О 1 , при которой изменится по правилу

.

Следовательно, момент сил не изменится, если .

5) Пусть , где , тогда .

Следовательно, если две одинаковые силы лежат на одной прямой , то их моменты одинаковые . Эта прямая называется линией действия силы . Длина вектора называется плечом силы относительно точки О.

Момент силы относительно оси.

Как следует из определения момент силы, координаты вектора моменты силы относительно координатных осей определяются формулами

, , .

Рассмотрим метод нахождения момента силы относительно некоторой оси z. Для этого надо рассмотреть вектор момента силы относительно некоторой точки О на этой оси и найти проекцию вектора момента силы на эту ось.

1) Проекция вектора момента силы на ось z не зависит от выбора точки О.

Возьмем на оси z две разные точки О 1 и О 2 и найдем моменты силы F относительно этих точек.

Разность векторов направлена перпендикулярно вектору , лежащему на оси z. Следовательно, если рассмотреть орт оси z – вектор , то проекции на ось z равны между собой

Поэтому, момент силы относительно оси z определен однозначно.

Следствие . Если момент силы относительно некоторой точки на оси равен нулю, то равен нулю момент силы относительно этой оси.

2) Если вектор силы параллелен оси z, то момент силы относительно оси равен нулю .

Действительно вектор момента силы относительно любой точки на оси должен быть перпендикулярен вектору силы, поэтому он также перпендикулярен и оси, параллельной этому вектору. Поэтому проекция вектора момента силы на эту ось будет равна нулю. Следовательно, если разложение вектора силы на компоненту параллельную оси, и компоненту , перпендикулярную оси, то

3) Если вектор силы и ось не параллельны, но лежат в одной плоскости, то момент силы относительно оси равен нулю. Действительно, в этом случае вектор момента силы относительно любой точки на оси направлен перпендикулярно этой плоскости (т.к. вектор тоже лежит в этой плоскости). Можно сказать и иначе. Если рассмотреть точку пресечения линии действия силы и прямой z, то момент силы относительно этой точки равен нулю, поэтому и момент силы относительно оси равен нулю.

Итак, чтобы найти момент силы относительно оси z, надо:

1) найти проекцию силы на любую плоскость p перпендикулярную этой оси и указать точку О - точку пересечения этой плоскости с осью z;

Похожая информация.


Самое лучшее определение вращательного момента – это тенденция силы вращать предмет вокруг оси, точки опоры или точки вращения. Вращательный момент можно рассчитать с помощью силы и плеча момента (перпендикулярное расстояние от оси до линии действия силы), или используя момент инерции и угловое ускорение.

Шаги

Использование силы и плеча момента

  1. Определите силы, действующие на тело и соответствующие им моменты. Если сила не перпендикулярна рассматриваемому плечу момента (т.е. она действует под углом), то вам может понадобиться найти ее составляющие с использованием тригонометрических функций, таких как синус или косинус.

    • Рассматриваемая составляющая силы будет зависеть от эквивалента перпендикулярной силы.
    • Представьте себе горизонтальный стержень, к которому нужно приложить силу 10 Н под углом 30° над горизонтальной плоскостью, чтобы вращать его вокруг центра.
    • Поскольку вам нужно использовать силу, не перпендикулярную плечу момента, то для вращения стержня вам необходима вертикальная составляющая силы.
    • Следовательно, нужно рассматривать y-составляющую, или использовать F = 10sin30° Н.
  2. Воспользуйтесь уравнением момента, τ = Fr, и просто замените переменные заданными или полученными данными.

    • Простой пример: Представьте себе ребенка массой 30 кг, сидящего на одном конце качели-доски. Длина одной стороны качели составляет 1,5 м.
    • Поскольку ось вращения качели находится в центре, вам не нужно умножать длину.
    • Вам необходимо определить силу, прилагаемую ребенком, с помощью массы и ускорения.
    • Поскольку дана масса, вам нужно умножить ее на ускорение свободного падения, g, равное 9,81 м/с 2 . Следовательно:
    • Теперь у вас есть все необходимые данные для использования уравнения момента:
  3. Воспользуйтесь знаками (плюс или минус), чтобы показать направление момента. Если сила вращает тело по часовой стрелке, то момент отрицательный. Если же сила вращает тело против часовой стрелки, то момент положительный.

    • В случае нескольких приложенных сил, просто сложите все моменты в теле.
    • Поскольку каждая сила стремится вызвать различные направления вращения, важно использовать знак поворота для того, чтобы следить за направлением действия каждой силы.
    • Например, к ободу колеса, имеющего диаметр 0,050 м, были приложены две силы, F 1 = 10,0 Н, направленная по часовой стрелке, и F 2 = 9,0 Н, направленная против часовой стрелки.
    • Поскольку данное тело – круг, фиксированная ось является его центром. Вам нужно разделить диаметр и получить радиус. Размер радиуса будет служить плечом момента. Следовательно, радиус равен 0,025 м.
    • Для ясности мы можем решить отдельные уравнения для каждого из моментов, возникающих от соответствующей силы.
    • Для силы 1 действие направлено по часовой стрелке, следовательно, создаваемый ею момент отрицательный:
    • Для силы 2 действие направлено против часовой стрелки, следовательно, создаваемый ею момент положительный:
    • Теперь мы можем сложить все моменты, чтобы получить результирующий вращательный момент:

    Использование момента инерции и углового ускорения

    1. Чтобы начать решать задачу, разберитесь в том, как действует момент инерции тела. Момент инерции тела – это сопротивление тела вращательному движению. Момент инерции зависит как от массы, так и от характера ее распределения.

      • Чтобы четко понимать это, представьте себе два цилиндра одинакового диаметра, но разной массы.
      • Представьте себе, что вам нужно повернуть оба цилиндра вокруг их центральной оси.
      • Очевидно, что цилиндр с большей массой будет сложнее повернуть, чем другой цилиндр, поскольку он “тяжелее”.
      • А теперь представьте себе два цилиндра различных диаметров, но одинаковой массы. Чтобы выглядеть цилиндрическими и иметь разную массу, но в то же время иметь разные диаметры, форма, или распределение массы обоих цилиндров должна отличаться.
      • Цилиндр с большим диаметром будет выглядеть как плоская закругленная пластина, тогда как меньший цилиндр будет выглядеть как цельная трубка из ткани.
      • Цилиндр с большим диаметром будет сложнее вращать, поскольку вам нужно приложить большую силу, чтобы преодолеть более длинное плечо момента.
    2. Выберите уравнение, которое вы будете использовать для расчета момента инерции. Есть несколько уравнений, которые можно использовать для этого.

      • Первое уравнение – самое простое: суммирование масс и плечей моментов всех частиц.
      • Это уравнение используется для материальных точек, или частиц. Идеальная частица – это тело, имеющее массу, но не занимающее пространства.
      • Другими словами, единственной значимой характеристикой этого тела является масса; вам не нужно знать его размер, форму или строение.
      • Идея материальной частицы широко используется в физике с целью упрощения расчетов и использования идеальных и теоретических схем.
      • Теперь представьте себе объект вроде полого цилиндра или сплошной равномерной сферы. Эти предметы имеют четкую и определенную форму, размер и строение.
      • Следовательно, вы не можете рассматривать их как материальную точку.
      • К счастью, можно использовать формулы, применимые к некоторым распространенным объектам:
    3. Найдите момент инерции. Чтобы начать рассчитывать вращательный момент, нужно найти момент инерции. Воспользуйтесь следующим примером как руководством:

      • Два небольших “груза” массой 5,0 кг и 7,0 кг установлены на расстоянии 4,0 м друг от друга на легком стержне (массой которого можно пренебречь). Ось вращения находится в середине стержня. Стержень раскручивается из состояния покоя до угловой скорости 30,0 рад/с за 3,00 с. Рассчитайте производимый вращательный момент.
      • Поскольку ось вращения находится в середине стержня, то плечо момента обоих грузов равно половине его длины, т.е. 2,0 м.
      • Поскольку форма, размер и строение “грузов” не оговаривается, мы можем предположить, что грузы являются материальными частицами.
      • Момент инерции можно вычислить следующим образом:
    4. Найдите угловое ускорение, α. Для расчета углового ускорения можно воспользоваться формулой α= at/r.

      • Первая формула, α= at/r, может использоваться в том случае, если дано тангенциальное ускорение и радиус.
      • Тангенциальное ускорение – это ускорение, направленное по касательной к направлению движения.
      • Представьте себе объект, двигающийся по криволинейному пути. Тангенциальное ускорение – это попросту его линейное ускорение на любой из точек всего пути.
      • В случае второй формулы, легче всего проиллюстрировать ее, связав с понятиями из кинематики: смещением, линейной скоростью и линейным ускорением.
      • Смещение – это расстояние, пройденное объектом (единица СИ – метры, м); линейная скорость – это показатель изменения смещения за единицу времени (единица СИ – м/с); линейное ускорение – это показатель изменения линейной скорости за единицу времени (единица СИ – м/с 2).
      • Теперь давайте рассмотрим аналоги этих величин при вращательном движении: угловое смещение, θ – угол поворота определенной точки или отрезка (единица СИ – рад); угловая скорость, ω – изменение углового смещения за единицу времени (единица СИ – рад/с); и угловое ускорение, α – изменение угловой скорости за единицу времени (единица СИ – рад/с 2).
      • Возвращаясь к нашему примеру – нам были даны данные для углового момента и время. Поскольку вращение начиналось из состояния покоя, то начальная угловая скорость равна 0. Мы можем воспользоваться уравнением, чтобы найти:
    5. Воспользуйтесь уравнением, τ = Iα, чтобы найти вращательный момент. Просто замените переменные ответами, полученными на предыдущих шагах.

      • Вы можете заметить, что единица "рад" не подходит к нашим единицам измерения, поскольку считается безразмерной величиной.
      • Это значит, что вы можете пренебречь ею и продолжить ваши расчеты.
      • Для анализа единиц измерения мы можем выразить угловое ускорение в с -2 .
    • В первом методе, если тело является кругом и ось его вращения находится в центре, то рассчитывать составляющие силы не нужно (при условии, что сила не приложена под наклоном), поскольку сила лежит на касательной к окружности, т.е. перпендикулярно плечу момента.
    • Если вам сложно представить, как происходит вращение, то возьмите ручку и попробуйте воссоздать задачу. Для более точного воспроизведения не забудьте скопировать положение оси вращения и направление приложенной силы.