Мультипликативный факторный анализ. Анализ и диагностика финансово-хозяйственной деятельности


к.э.н., директор по науке и развитию ЗАО "КИС"

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов - анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация - это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации - это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Для мультипликативной модели фактическое значение рассчитывается по формуле:

Расчет фактического значения в мультипликативной модели

Т - трендовое значение

S - сезонная вариация

Е - ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) - это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n - период усреднения,

Р(i) - усредняемый объем (i - 1) период тому назад (i-е измерение или отсчет),

P(1) - объем продаж за последний период,

P(n) - самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов - восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей - это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных - провести десезонализация данных. Но это уже в следующем выпуске.

Способ абсолютных разниц применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных моделях (Y = xt-x x x i) и моделях мультипликативно-аддитивного типа Y= (а - Ь)с и Y = = a(b - с). И хотя его использование ограничено, но благодаря своей простоте он получил широкое применение в АХД.  


Рассмотрим алгоритм расчета факторов этим способом в моделях мультипликативно-аддитивного вида. Для примера возьмем факторную модель прибыли от реализации продукции  

Модель мультипликативная - жестко детерминированная факторная модель , в которую факторы входят в виде произведения.  

Строго говоря, все сезонные модели мультипликативны и имеют лишь один линейный элемент (роп), он и будет аддитивным.  

В данном случае для преобразования исходной факторной модели , построенной на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель мультипликативно-аддитивно-кратного вида, которая имеет большую познавательную ценность, поскольку учитывает причинно-следственные связи между показателями. Данная модель позволяет исследовать, как влияют на доходность капитала объем продаж , отпускные цены , себестоимость реализованной продукции, внереализационные финансовые результаты , а также скорость обращения капитала.  

Итак, мы рассмотрели четыре способа выявления сезонной компоненты аддитивную модель , мультипликативную модель, метод экспоненциального сглаживания с тремя параметрами, гармонический анализ Фурье (рис. П-7). В нашем примере оказалось, что наименьшую ошибку дает мультипликативная модель, т. е. применение индексов сезонности.  

Поскольку модель мультипликативная, то применимы следующие способы ее обработки.  

Методика построения мультипликативных моделей эффективности производства.  

Вычислительная схема реализации расчетов по модели (2)- (9) на основе мультипликативного алгоритма симплекс. - метода показана на рисунке.  

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, атакже от возможностей детализации и формализации показателей в пределах установленных правил.  

Наиболее универсальным из них является способ цепной подстановки . Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде . С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и последующих факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминировать влияние всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя. Порядок применения этого способа рассмотрим на примере, приведенном в табл. 4.1.  

Как нам уже известно, объем валовой продукции (ВП) зависит от двух основных факторов первого порядка численности рабочих (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель  

Мультипликативные модели - модели умножения. Например, объем продукции может быть определен по выражению  

Корреляционная модель себестоимости добычи нефти и попутного газа по указанным факторам была рассчитана по мультипликативной функции Кобба - Дугласа (41). В результате решения этой модели было составлено сводное уравнение по нефтедобывающей промышленности Украинской ССР  

Основным недостатком логарифмического метода анализа является то, что он не может быть универсальным, его нельзя применять при анализе любого вида моделей факторных систем. Если при анализе мультипликативных моделей факторных систем при использовании логарифмического метода достигается получение точных величин влияния факторов (в. случае, когда Az = 0), то при таком же анализе кратных моделей факторных систем получение точных величин влияния факторов не удается.  

Формирование рабочих формул интегрального метода для мультипликативных моделей. Применение интегрального метода факторного анализа в детерминированном экономическом анализе наиболее полно решает проблему получения однозначно определяемых величин влияния факторов.  

Выше было установлено, что любую модель конечной факторной системы можно привести к двум видам - мультипликативной и кратной. Это условие предопределяет то, что исследователь имеет дело с двумя основными видами моделей факторных систем, так как остальные модели - это их разновидности.  

При формировании рабочих формул расчета влияния факторов в условиях применения ЭВМ пользуются следующими правилами, -отражающими механику работы с матрицами подынтегральные выражения элементов структуры факторной системы для мультипликативных моделей строятся путем произведения полного набора элементов значений, взятых по каждой строке матрицы , отнесенных к определенному элементу структуры факторной системы с последующей расшифровкой  

Элементы мультипликативной модели  

В случае отсутствия универсальных вычислительных средств предложим чаще всего встречающийся в экономическом анализе набор формул расчета элементов структуры для мультипликативных (табл. 5.4) и кратных (табл. 5.3) моделей факторных систем, которые были выведены в результате выполнения процесса интегрирования. Учитывая потребность наибольшего их упрощения, выполнена вычислительная процедура по сжатию формул, полученных после вычисления определенных интегралов (операции интегрирования).  

Набор частных свойств специфичен, как и формы их синтеза. В большинстве случаев отдельные свойства коррелируют, что обусловливает т.н. мультипликативный эффект взаимоусиления (чаще) или взаимовлияния на полезность (качество) изделия. Поэтому приближенный к истине при отсутствии теоретически обоснованной модели является способ выражения интегрального показателя качества функцией вида  

Алгоритм расчета для мультипликативной четырехфакторнон модели валовой продукции выглядит следующим образом  

Интегральный метол применяется для измерения влияния факторов в мультипликативных, кратных и кратно-а 1дитии ых моделях. Его использование позволяет получать более точные результаты расчета влияния факторов по сравнению со способами г пной подстановки, абсолютных и относительных разниц, поскольку дополнительный прирост результативного показателя от взаимодействия факторов присоединяется не к последнему фактору, а делится поровну между ними.  

Построенные многофакторные корреляционные модели по нефте-х добывающей промышленности Украины,

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или .
Общий вид мультипликативной модели выглядит так:

Где T - трендовая компонента, S - сезонная компонента и E - случайная компонента.
Назначение . С помощью данного сервиса производится построение мультипликативной модели временного ряда.

Алгоритм построения мультипликативной модели

Построение мультипликативной моделей сводится к расчету значений T , S и E для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты S .
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T x E).
  4. Аналитическое выравнивание уровней (T x E) с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений (T x E).
  6. Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Пример . Построить аддитивную и мультипликативную модель временного ряда, характеризующую зависимость уровней ряда от времени.
Решение . Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 898 - - -
2 794 1183.25 - -
3 1441 1200.5 1191.88 1.21
4 1600 1313.5 1257 1.27
5 967 1317.75 1315.63 0.74
6 1246 1270.75 1294.25 0.96
7 1458 1251.75 1261.25 1.16
8 1412 1205.5 1228.63 1.15
9 891 1162.75 1184.13 0.75
10 1061 1218.5 1190.63 0.89
11 1287 - - -
12 1635 - - -
Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.21 1.27
2 0.74 0.96 1.16 1.15
3 0.75 0.89 - -
Всего за период 1.49 1.85 2.37 2.42
Средняя оценка сезонной компоненты 0.74 0.93 1.18 1.21
Скорректированная сезонная компонента, S i 0.73 0.91 1.16 1.19
Для данной модели имеем:
0.744 + 0.927 + 1.183 + 1.211 = 4.064
Корректирующий коэффициент: k=4/4.064 = 0.984
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
12a 0 + 78a 1 = 14659.84
78a 0 + 650a 1 = 96308.75
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 1 = 7.13, a 0 = 1175.3
Среднее значения
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 1226.81 1 1505062.02 1226.81 1182.43 26.59 1969.62
2 870.35 4 757510.32 1740.7 1189.56 123413.31 101895.13
3 1238.16 9 1533048.66 3714.49 1196.69 272.59 1719.84
4 1342.37 16 1801951.56 5369.47 1203.82 14572.09 19194.4
5 1321.07 25 1745238.05 6605.37 1210.96 9884.65 12126.19
6 1365.81 36 1865450.09 8194.89 1218.09 20782.63 21823.45
7 1252.77 49 1569433.89 8769.39 1225.22 968.3 759.1
8 1184.64 64 1403371.14 9477.12 1232.35 1369.99 2276.31
9 1217.25 81 1481689.26 10955.22 1239.48 19.42 494.41
10 1163.03 100 1352627.82 11630.25 1246.61 3437.21 6987
11 1105.84 121 1222883.47 12164.25 1253.75 13412.51 21875.75
12 1371.73 144 1881649.21 16460.79 1260.88 22523.77 12288.93
78 14659.84 650 18119915.49 96308.75 14659.84 210683.05 203410.13
Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 1175.298 + 7.132t
Подставляя в это уравнение значения t = 1,...,12, найдем уровни T для каждого момента времени (гр. 5 табл.).
t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 898 0.73 1226.81 1182.43 865.51 1.04 1055.31
2 794 0.91 870.35 1189.56 1085.21 0.73 84801.95
3 1441 1.16 1238.16 1196.69 1392.74 1.03 2329.49
4 1600 1.19 1342.37 1203.82 1434.87 1.12 27269.14
5 967 0.73 1321.07 1210.96 886.4 1.09 6497.14
6 1246 0.91 1365.81 1218.09 1111.23 1.12 18162.51
7 1458 1.16 1252.77 1225.22 1425.93 1.02 1028.18
8 1412 1.19 1184.64 1232.35 1468.87 0.96 3233.92
9 891 0.73 1217.25 1239.48 907.28 0.98 264.9
10 1061 0.91 1163.03 1246.61 1137.26 0.93 5814.91
11 1287 1.16 1105.84 1253.75 1459.13 0.88 29630.23
12 1635 1.19 1371.73 1260.88 1502.87 1.09 17458.67
Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 12
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
t y (y-y cp) 2
1 898 106384.69
2 794 185043.36
3 1441 47016.69
4 1600 141250.69
5 967 66134.69
6 1246 476.69
7 1458 54678.03
8 1412 35281.36
9 891 111000.03
10 1061 26623.36
11 1287 3948.03
12 1635 168784.03
78 14690 946621.67


Следовательно, можно сказать, что мультипликативная модель объясняет 79% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.

где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.96
Поскольку F> Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 1175.298 + 7.132t
Получим
T 13 = 1175.298 + 7.132*13 = 1268.008
Значение сезонного компонента за соответствующий период равно: S 1 = 0.732
Таким образом, F 13 = T 13 + S 1 = 1268.008 + 0.732 = 1268.74
T 14 = 1175.298 + 7.132*14 = 1275.14
Значение сезонного компонента за соответствующий период равно: S 2 = 0.912
Таким образом, F 14 = T 14 + S 2 = 1275.14 + 0.912 = 1276.052
T 15 = 1175.298 + 7.132*15 = 1282.271
Значение сезонного компонента за соответствующий период равно: S 3 = 1.164
Таким образом, F 15 = T 15 + S 3 = 1282.271 + 1.164 = 1283.435
T 16 = 1175.298 + 7.132*16 = 1289.403
Значение сезонного компонента за соответствующий период равно: S 4 = 1.192
Таким образом, F 16 = T 16 + S 4 = 1289.403 + 1.192 = 1290.595

При построении экономических моделей выявляются существенные факторы и отбрасываются детали несущественные для решения поставленной задачи.

К экономическим моделям могут относится модели:

  • экономического роста
  • потребительского выбора
  • равновесия на финансовом и товарном рынке и многие другие.

Модель — это логическое или математическое описание компонентов и функций, отражающих существенные свойства моделируемого объекта или процесса.

Модель используется как условный образ, сконструированный для упрощения исследования объекта или процесса.

Природа моделей может быть различна. Модели подразделяются на: вещественные, знаковые, словесное и табличное описание и др.

Экономико-математическая модель

В управлении хозяйственными процессами наибольшее значение имеют прежде всего экономико-математические модели , часто объединяемые в системы моделей.

Экономико-математическая модель (ЭММ) — это математическое описание экономического объекта или процесса с целью их исследования и управления ими. Это математическая запись решаемой экономической задачи.

Основные типы моделей
  • Экстраполяционные модели
  • Факторные эконометрические модели
  • Оптимизационные модели
  • Балансовые модели, модель МежОтраслевогоБаланса (МОБ)
  • Экспертные оценки
  • Теория игр
  • Сетевые модели
  • Модели систем массового обслуживания

Экономико-математические модели и методы, применяемые в экономическом анализе

R a = ЧП / ВА + ОА ,

В обобщенном виде смешанная модель может быть представлена такой формулой:

Итак, вначале следует построить экономико-математическую модель, описывающую влияние отдельных факторов на обобщающие экономические показатели деятельности организации. Большое распространение в анализе хозяйственной деятельности получили многофакторные мультипликативные модели , так как они позволяют изучить влияние значительного количества факторов на обобщающие показатели и тем самым достичь большей глубины и точности анализа.

После этого нужно выбрать способ решения этой модели. Традиционные способы : способ цепных подстановок, способы абсолютных и относительных разниц, балансовый способ, индексный метод, а также методы корреляционно-регрессионного, кластерного, дисперсионного анализа, и др. Наряду с этими способами и методами в экономическом анализе используются и специфически математические способы и методы.

Интегральный метод экономического анализа

Одним из таких способов (методов) является интегральный. Он находит применение при определении влияния отдельных факторов с использованием мультипликативных, кратных, и смешанных (кратно-аддитивных) моделей.

В условиях применения интегрального метода имеется возможность получения более обоснованных результатов исчисления влияния отдельных факторов, чем при использовании метода цепных подстановок и его вариантов. Метод цепных подстановок и его варианты, а также индексный метод имеют существенные недостатки: 1) результаты расчетов влияния факторов зависят от принятой последовательности замены базисных величин отдельных факторов на фактические; 2) дополнительный прирост обобщающего показателя, вызванный взаимодействием факторов, в виде неразложимого остатка присоединяется к сумме влияния последнего фактора. При использовании же интегрального метода этот прирост делится поровну между всеми факторами.

Интегральный метод устанавливает общий подход к решению моделей различных видов, причем независимо от числа элементов, которые входят в данную модель, а также независимо от формы связи между этими элементами.

Интегральный метод факторного экономического анализа имеет в своей основе суммирование приращений функции, определенной как частная производная, умноженная на приращение аргумента на бесконечно малых промежутках.

В процессе применения интегрального метода необходимо соблюдение нескольких условий. Во-первых, должно соблюдаться условие непрерывной дифференцируемости функции, где в качестве аргумента берется какой-либо экономический показатель. Во-вторых, функция между начальной и конечной точками элементарного периода должна изменяться по прямой Г е . Наконец, в третьих, должно иметь место постоянство соотношения скоростей изменения величин факторов

d y / d x = const

При использовании интегрального метода исчисление определенного интеграла по заданной подынтегральной функции и заданному интервалу интегрирования осуществляется по имеющейся стандартной программе с применением современных средств вычислительной техники.

Если мы осуществляем решение мультипликативной модели, то для расчета влияния отдельных факторов на обобщающий экономический показатель можно использовать следующие формулы:

ΔZ(x) = y 0 * Δ x + 1/2 Δ x * Δ y

Z(y)= x 0 * Δ y +1/2 Δ x * Δ y

При решении кратной модели для расчета влияния факторов воспользуемся такими формулами:

Z=x /y ;

Δ Z(x) = Δ x y Ln y1/y0

Δ Z(y)= Δ Z - Δ Z(x)

Существует два основных типа задач, решаемых при помощи интегрального метода: статический и динамический. При первом типе отсутствует информация об изменении анализируемых факторов в течение данного периода. Примерами таких задач могут служить анализ выполнения бизнес-планов либо анализ изменения экономических показателей по сравнению с предыдущим периодом. Динамический тип задач имеет место в условиях наличия информации об изменении анализируемых факторов в течение данного периода. К этому типу задач относятся вычисления, связанные с изучением временных рядов экономических показателей.

Таковы важнейшие черты интегрального метода факторного экономического анализа.

Метод логарифмирования

Кроме этого метода, в анализе находит применение также метод (способ) логарифмирования. Он используется при проведении факторного анализа, когда решаются мультипликативные модели. Сущность рассматриваемого метода заключается в том, что при его использовании имеет место логарифмически пропорциональное распределение величины совместного действия факторов между последними, то есть эта величина распределяется между факторами пропорционально доле влияния каждого отдельного фактора на сумму обобщающего показателя. При интегральном же методе упомянутая величина распределяется между факторами в одинаковой мере. Поэтому метод логарифмирования делает расчеты влияния факторов более обоснованными по сравнению с интегральным методом.

В процессе логарифмирования находят применение не абсолютные величины прироста экономических показателей, как это имеет место при интегральном методе, а относительные, то есть индексы изменения этих показателей. К примеру, обобщающий экономический показатель определяется в виде произведения трех факторов — сомножителей f = x y z .

Найдем влияние каждого из этих факторов на обобщающий экономический показатель. Так, влияние первого фактора может быть определено по следующей формуле:

Δf x = Δf · lg(x 1 / x 0) / lg(f 1 / f 0)

Каким же было влияние следующего фактора? Для нахождения его влияния воспользуемся следующей формулой:

Δf y = Δf · lg(y 1 / y 0) / lg(f 1 / f 0)

Наконец, для того, чтобы исчислить влияние третьего фактора, применим формулу:

Δf z = Δf · lg(z 1 / z 0)/ lg(f 1 / f 0)

Таким образом, общая сумма изменения обобщающего показателя расчленяется между отдельными факторами в соответствии с пропорциями отношений логарифмов отдельных факторных индексов к логарифму обобщающего показателя.

При применении рассматриваемого метода могут быть использованы любые виды логарифмов — как натуральные, так и десятичные.

Метод дифференциального исчисления

При проведении факторного анализа находит применение также метод дифференциального исчисления. Последний предполагает, что общее изменение функции, то есть обобщающего показателя, подразделяется на отдельные слагаемые, значение каждого из которых исчисляется как произведение определенной частной производной на приращение переменной, по которой определена эта производная. Определим влияние отдельных факторов на обобщающий показатель, используя в качестве примера функцию от двух переменных.

Задана функция Z = f(x,y) . Если эта функция является дифференцируемой, то ее изменение может быть выражено следующей формулой:

Поясним отдельные элементы этой формулы:

ΔZ = (Z 1 - Z 0) - величина изменения функции;

Δx = (x 1 - x 0) — величина изменения одного фактора;

Δ y = (y 1 - y 0) -величина изменения другого фактора;

- бесконечно малая величина более высокого порядка, чем

В данном примере влияние отдельных факторов x и y на изменение функции Z (обобщающего показателя) исчисляется следующим образом:

ΔZ x = δZ / δx · Δx; ΔZ y = δZ / δy · Δy.

Сумма влияния обоих этих факторов — это главная, линейная относительно приращения данного фактора часть приращения дифференцируемой функции, то есть обобщающего показателя.

Способ долевого участия

В условиях решения аддитивных, а также кратно-аддитивных моделей для исчисления влияния отдельных факторов на изменение обобщающего показателя используется также способ долевого участия. Его сущность состоит в том, что вначале определяется доля каждого фактора в общей сумме их изменений. Затем эта доля умножается на общую величину изменения обобщающего показателя.

Предположим, что мы определяем влияние трех факторов — а ,b и с на обобщающий показатель y . Тогда для фактора, а определение его доли и умножение ее на общую величину изменения обобщающего показателя можно осуществить по следующей формуле:

Δy a = Δa/Δa + Δb + Δc*Δy

Для фактора в рассматриваемая формула будет иметь следующий вид:

Δy b =Δb/Δa + Δb +Δc*Δy

Наконец, для фактора с имеем:

Δy c =Δc/Δa +Δb +Δc*Δy

Такова сущность способа долевого участия, используемого для целей факторного анализа.

Метод линейного программирования

См.далее:

Теория массового обслуживания

См.далее:

Теория игр

Находит применение также теория игр. Так же, как и теория массового обслуживания, теория игр представляет собой один из разделов прикладной математики. Теория игр изучает оптимальные варианты решений, возможные в ситуациях игрового характера. Сюда относятся такие ситуации, которые связаны с выбором оптимальных управленческих решений, с выбором наиболее целесообразных вариантов взаимоотношений с другими организациями, и т.п.

Для решения подобных задач в теории игр используются алгебраические методы, которые базируются на системе линейных уравнений и неравенств, итерационные методы, а также методы сведения данной задачи к определенной системе дифференциальных уравнений.

Одним из экономико-математических методов, применяемых в анализе хозяйственной деятельности организаций, является так называемый анализ чувствительности. Данный метод зачастую применяется в процессе анализа инвестиционных проектов, а также в целях прогнозирования суммы прибыли, остающейся в распоряжении данной организации.

В целях оптимального планирования и прогнозирования деятельности организации необходимо заранее предусматривать те изменения, которые в будущем могут произойти с анализируемыми экономическими показателями.

Например, следует заранее прогнозировать изменение величин тех факторов, которые влияют на размер прибыли: уровень покупных цен на приобретаемые материальные ресурсы, уровень продажных цен на продукцию данной организации, изменение спроса покупателей на эту продукцию.

Анализ чувствительности состоит в определении будущего значения обобщающего экономического показателя при условии, что величина одного или нескольких факторов, оказывающих влияние на этот показатель, изменится.

Так, например, устанавливают, на какую величину изменится прибыль в перспективе при условии изменения количества продаваемой продукции на единицу. Этим самым мы анализируем чувствительность чистой прибыли к изменению одного из факторов, влияющих на нее, то есть в данном случае фактора объема продаж. Остальные же факторы, влияющие на величину прибыли, являются при этом неизменными. Можно определить величину прибыли также и при одновременном изменении в будущем влияния нескольких факторов. Таким образом анализ чувствительности дает возможность установить силу реагирования обобщающего экономического показателя на изменение отдельных факторов, оказывающих влияние на этот показатель.

Матричный метод

Наряду с вышеизложенными экономико-математическими методами в анализе хозяйственной деятельности находят применение также . Эти методы базируются на линейной и векторно-матричной алгебре.

Метод сетевого планирования

См.далее:

Экстраполяционный анализ

Кроме рассмотренных методов, используется также экстраполяционный анализ. Он включает в себя рассмотрение изменений состояния анализируемой системы и экстраполяцию, то есть продление имеющихся характеристик этой системы на будущие периоды. В процессе осуществления этого вида анализа можно выделить такие основные этапы: первичная обработка и преобразование исходного ряда имеющихся данных; выбор типа эмпирических функций; определение основных параметров этих функций; экстраполяция; установление степени достоверности проведенного анализа.

В экономическом анализе используется также метод главных компонент. Они применяется в целях сравнительного анализа отдельных составных частей, то есть параметров проведенного анализа деятельности организации. Главные компоненты представляют собой важнейшие характеристики линейных комбинаций составных частей, то есть параметров проведенного анализа, которые имеют самые значительные величины дисперсии, а именно, наибольшие абсолютные отклонения от средних величин.

Мультипликативная модель.

Пример 2. Выручка от реализации продукции (объем продукции - V) может быть выражена как произведение комплекса факторов: численность персонала (Чп), доля рабочих в общей численности персонала (dр); среднегодовая выработка одного рабочего (Вр)

V = Чп * dр * Вр


Смешанная (комбинированная) модель представляет собой сочетание в различных комбинациях предыдущих моделей: Пример 4. Рентабельность предприятия (Р) определяется как частное от деления балансовой прибыли (Пбал) на среднегодовую стоимость основных (ОС) и нормируемых оборотных (ОБ) средств:

Ø Преобразования детерминированных факторных моделей

Для моделирования различных ситуаций в факторном анализе применяются специальные методы преобразования типовых факторных моделей. Все они основаны на приеме детализации . Детализация – разложение более общих факторов на менее общие. Детализация позволяет на основе знания экономической теории упорядочить анализ, содействует комплексному рассмотрению факторов, указывает значимость каждого из них.

Развитие детерминированной факторной системы достигается, как правило, за счет детализации комплексных факторов. Элементные (простые) факторы не раскладываются.

Пример 1. Факторы

Большая часть традиционных (специальных) приемов детерминированного факторного анализа основана на элиминировании . Прием элиминирования используется для определения изолированного фактора путем исключения воздействия всех остальных. Исходной посылкой данного приема является следующая: Все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, затем изменяются два, три и т.д. при неизменности остальных. Прием элиминирования является в свою очередь основой для других приемов детерминированного факторного анализа, цепных подстановок, индексных, абсолютных и относительных (процентных) разниц.

Ø Прием цепных подстановок

Цель.

Область применения . Все виды детерминированных факторных моделей.

Ограничение на использование.

Порядок применения . Рассчитывается ряд скорректированных значений результативного показателя путем последовательной замены базисных значений факторов на фактические.

Расчет влияния факторов целесообразно проводить в аналитической таблице.

Исходная модель: П = А х В х С х Д

А

Ø Прием абсолютных разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения. Детерминированные факторные модели; в том числе:

1. Мультипликативные

2. Смешанные (комбинированные)

типа Y = (A-B)C и Y = A(B-C)

Ограничения на использование. Факторы в модели должны быть последовательно расположены: от количественных к качественным, от более общих к более частным.

Порядок применения. Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения абсолютного прироста исследуемого фактора на базисную (плановую) величину факторов, которые в модели находятся справа от него, и на фактическую величину факторов, расположенных слева.

В случае исходной мультипликативной модели П = А х В х С х Д получим: изменение результативного показателя

1. За счет фактора А:

DП А = (А 1 – А 0) х В 0 х С 0 х Д 0

2. За счет фактора В:

DП В = А 1 х (В 1 - В 0) х С 0 х Д 0

3. За счет фактора С:

DП С = А 1 х В 1 х (С 1 - С 0) х Д 0

4. За счет фактора Д:

DП Д = А 1 х В 1 х С 1 х (Д 1 - Д 0)

5. Общее изменение (отклонение) результативного показателя (баланс отклонений)

D П = D П а + D П в + D П с + D П д

Баланс отклонений должен соблюдаться (так же как в приеме цепных подстановок).

Ø Прием относительных (процентных) разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, включая:

1) мультипликативные;

2) комбинированные типа Y = (А – В) С,

целесообразно применять, когда известны определенные ранее относительные отклонения факторных показателей в процентах или коэффициентах.

Требования к последовательности расположения факторов в модели отсутствуют.

Исходная посылка . Результативный признак изменяется пропорционально изменению факторного признака.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения базисного (планового)значения результативного показателя на относительный прирост факторного признака.



Исходная модель:

Изменение результативного показателя:

1. За счет фактора А:


За счет фактора В:

2. За счет фактора С:


Баланс отклонений . Общее отклонение результативного показателя складывается из отклонений по факторам:

D Y = Y 1 - Y 0 = D Y A + D Y B + D Y C

Ø Индексный метод

Цель. Измерение относительного и абсолютного изменения экономических показателей и влияния на него различных факторов.

Область применения .

1. Анализ динамики показателей, в том числе агрегированных (сложенных).

2. Детерминированные факторные модели; включая мультипликативные и кратные.

Порядок применения . Абсолютное и относительное изменение экономических явлений.

Агрегатный индекс стоимости продукции (товарооборота)


I pq – характеризует относительное изменение стоимости продукции в действующих ценах (ценах соответствующего периода)

Разность числителя и знаменателя (åp 1 q 1 - åp o q 0) – характеризует абсолютное изменение стоимости продукции в отчетном периоде по сравнению с базисным.

Агрегатный индекс цен:


I p – характеризует относительное изменение средней цены на совокупность видов продукции (товаров).

Разность числителя и знаменателя (åp 1 q 1 - åp o q 1) – характеризует абсолютное изменение стоимости продукции вследствие изменения цен на отдельные ее виды.

Агрегатный индекс физического объема продукции:

характеризует относительное изменение объема продукции в фиксированных (сопоставимых) ценах.

åq 1 p 0 - åq 0 p 0 – разность числителя и знаменателя характеризует абсолютное изменение стоимости продукции вследствие изменения физических объемов различных ее видов.

На основе индексных моделей проводится факторный анализ.

Так, классической аналитической задачей является определение влияния на стоимость продукции фактора количества (физического объема) и цен:

В абсолютных величинах

å p 1 q 1 - å p 0 q 0 = (å q 1 p 0 - å q 0 p 0) + (å p 1 q 1 - å p 0 q 1).

Аналогично, используя индексную модель, можно определить влияние на полную себестоимость продукции (zq) факторов ее физического объема (q) и себестоимости единицы продукции различных видов (z)

В абсолютном выражении

å z 1 q 1 - å z 0 q 0 = (å q 1 z 0 - å q 0 z 0) + (å z 1 q 1 - å z 0 q 1)

Ø Интегральный метод

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, в том числе

· Мультипликативные

· Кратные

· Смешанные типа


Преимущества. По сравнению с приемами, основанными на элиминировании, дает более точные результаты, поскольку дополнительный прирост результативного показателя за счет взаимодействия факторов распределяется пропорционально их изолированному воздействию на результативный показатель.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется на основе формул для разных факторных моделей, выведенных с применением дифференцирования и интегрирования в факторном анализе.


Изменение результативного показателя за счет фактора х

D¦ х = D ху 0 +DхDу / 2

за счет фактора у

D¦ у = D ух 0 +DуDх / 2

Общее изменение результативного показателя: D¦ = D¦ х + D¦ у

Баланс отклонений

D¦ = ¦ 1 - ¦ 0 = D¦ х +D¦ у