Наиболее и наименьшее значение функции. Наибольшее и наименьшее значения функции двух переменных в замкнутой области

В задании B14 из ЕГЭ по математике требуется найти наименьшее или наибольшее значение функции одной переменной. Это достаточно тривиальная задача из математического анализа, и именно по этой причине научиться решать её в норме может и должен каждый выпускник средней школы. Разберём несколько примеров, которые школьники решали на диагностической работе по математике, прошедшей в Москве 7 декабря 2011 года.

В зависимости от промежутка, на котором требуется найти максимальное или минимальное значение функции, для решения этой задачи используется один из следующих стандартных алгоритмов.

I. Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке:

  • Найти производную функции.
  • Выбрать из точек, подозрительных на экстремум, те, которые принадлежат данному отрезку и области определения функции.
  • Вычислить значения функции (не производной!) в этих точках.
  • Среди полученных значений выбрать наибольшее или наименьшее, оно и будет искомым.

Пример 1. Найдите наименьшее значение функции
y = x 3 – 18x 2 + 81x + 23 на отрезке .

Решение: действуем по алгоритму нахождения наименьшего значения функции на отрезке:

  • Область определения функции не ограничена: D(y) = R.
  • Производная функции равна: y’ = 3x 2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.
  • Нули производной: y’ = 3x 2 – 36x + 81 = 0, значит x 2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).
  • Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x 3 – 18x 2 + 81x + 23 = x (x -9) 2 +23:
    • y (8) = 8 · (8-9) 2 +23 = 31;
    • y (9) = 9 · (9-9) 2 +23 = 23;
    • y (13) = 13 · (13-9) 2 +23 = 231.

Итак, из полученных значений наименьшим является 23. Ответ: 23.

II. Алгоритм нахождения наибольшего или наименьшего значения функции:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Отметить эти точки и область определения функции на числовой прямой и определить знаки производной (не функции!) на получившихся промежутках.
  • Определить значения функции (не производной!) в точках минимума (те точки, в которых знак производной меняется с минуса на плюс), наименьшее из этих значений будет наименьшим значением функции. Если точек минимума нет, то у функции нет наименьшего значения.
  • Определить значения функции (не производной!) в точках максимума (те точки, в которых знак производной меняется с плюса на минус), наибольшее из этих значений будет наибольшим значением функции. Если точек максимума нет, то у функции нет наибольшего значения.

Пример 2. Найдите наибольшее значение функции.

\(\blacktriangleright\) Для того, чтобы найти наибольшее/наименьшее значение функции на отрезке \(\) , необходимо схематично изобразить график функции на этом отрезке.
В задачах из данной подтемы это можно сделать с помощью производной: найти промежутки возрастания (\(f">0\) ) и убывания (\(f"<0\) ) функции, критические точки (где \(f"=0\) или \(f"\) не существует).

\(\blacktriangleright\) Не стоит забывать, что наибольшее/наименьшее значение функция может принимать не только во внутренних точках отрезка \(\) , а также на его концах.

\(\blacktriangleright\) Наибольшее/наименьшее значение функции - это значение координаты \(y=f(x)\) .

\(\blacktriangleright\) Производная сложной функции \(f(t(x))\) ищется по правилу: \[{\Large{f"(x)=f"(t)\cdot t"(x)}}\]
\[\begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{1} & c & 0\\&&\\ \textbf{2} & x^a & a\cdot x^{a-1}\\&&\\ \textbf{3} & \ln x & \dfrac1x\\&&\\ \textbf{4} & \log_ax & \dfrac1{x\cdot \ln a}\\&&\\ \textbf{5} & e^x & e^x\\&&\\ \textbf{6} & a^x & a^x\cdot \ln a\\&&\\ \textbf{7} & \sin x & \cos x\\&&\\ \textbf{8} & \cos x & -\sin x\\ \hline \end{array} \quad \quad \quad \quad \begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{9} & \mathrm{tg}\, x & \dfrac1{\cos^2 x}\\&&\\ \textbf{10} & \mathrm{ctg}\, x & -\,\dfrac1{\sin^2 x}\\&&\\ \textbf{11} & \arcsin x & \dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{12} & \arccos x & -\,\dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{13} & \mathrm{arctg}\, x & \dfrac1{1+x^2}\\&&\\ \textbf{14} & \mathrm{arcctg}\, x & -\,\dfrac1{1+x^2}\\ \hline \end{array}\]

Задание 1 #2357

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = e^{x^2 - 4}\) на отрезке \([-10; -2]\) .

ОДЗ: \(x\) – произвольный.

1) \

\ Таким образом, \(y" = 0\) при \(x = 0\) .

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-10; -2]\) :


4) Эскиз графика на отрезке \([-10; -2]\) :


Таким образом, наименьшего на \([-10; -2]\) значения функция достигает в \(x = -2\) .

\ Итого: \(1\) – наименьшее значение функции \(y\) на \([-10; -2]\) .

Ответ: 1

Задание 2 #2355

Уровень задания: Равен ЕГЭ

\(y = \sqrt{2}\cdot\sqrt{x^2 + 1}\) на отрезке \([-1; 1]\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\sqrt{2}\cdot\dfrac{x}{\sqrt{x^2 + 1}} = 0\qquad\Leftrightarrow\qquad x = 0\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-1; 1]\) :


4) Эскиз графика на отрезке \([-1; 1]\) :


Таким образом, наибольшего на \([-1; 1]\) значения функция достигает в \(x = -1\) или в \(x = 1\) . Сравним значения функции в этих точках.

\ Итого: \(2\) – наибольшее значение функции \(y\) на \([-1; 1]\) .

Ответ: 2

Задание 3 #2356

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = \cos 2x\) на отрезке \(\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-2\cdot \sin 2x = 0\qquad\Leftrightarrow\qquad 2x = \pi n, n\in\mathbb{Z}\qquad\Leftrightarrow\qquad x = \dfrac{\pi n}{2}, n\in\mathbb{Z}\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


(здесь бесконечное число промежутков, в которых чередуются знаки производной).

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \(\) :


4) Эскиз графика на отрезке \(\) :


Таким образом, наименьшего на \(\) значения функция достигает в \(x = \dfrac{\pi}{2}\) .

\ Итого: \(-1\) – наименьшее значение функции \(y\) на \(\) .

Ответ: -1

Задание 4 #915

Уровень задания: Равен ЕГЭ

Найдите наибольшее значение функции

\(y = -\log_{17}(2x^2 - 2\sqrt{2}x + 2)\) .

ОДЗ: \(2x^2 - 2\sqrt{2}x + 2 > 0\) . Решим на ОДЗ:

1) Обозначим \(2x^2-2\sqrt{2}x+2=t(x)\) , тогда \(y(t)=-\log_{17}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-\dfrac{1}{\ln 17}\cdot\dfrac{4x-2\sqrt{2}}{2x^2-2\sqrt{2}x+2} = 0\qquad\Leftrightarrow\qquad 4x-2\sqrt{2} = 0\] – на ОДЗ, откуда находим корень \(x = \dfrac{\sqrt{2}}{2}\) . Производная функции \(y\) не существует при \(2x^2-2\sqrt{2}x+2 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, наибольшее значение функция достигает в \(x = \dfrac{\sqrt{2}}{2}\) :

\(y\left(\dfrac{\sqrt{2}}{2}\right) = -\log_{17}1 = 0\) ,

Итого: \(0\) – наибольшее значение функции \(y\) .

Ответ: 0

Задание 5 #2344

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции

\(y = \log_{3}(x^2 + 8x + 19)\) .

ОДЗ: \(x^2 + 8x + 19 > 0\) . Решим на ОДЗ:

1) Обозначим \(x^2 + 8x + 19=t(x)\) , тогда \(y(t)=\log_{3}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\dfrac{1}{\ln 3}\cdot\dfrac{2x+8}{x^2 + 8x + 19} = 0\qquad\Leftrightarrow\qquad 2x+8 = 0\] – на ОДЗ, откуда находим корень \(x = -4\) . Производная функции \(y\) не существует при \(x^2 + 8x + 19 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, \(x = -4\) – точка минимума функции \(y\) и наименьшее значение достигается в ней:

\(y(-4) = \log_{3}3 = 1\) .

Итого: \(1\) – наименьшее значение функции \(y\) .

Ответ: 1

Задание 6 #917

Уровень задания: Сложнее ЕГЭ

Найдите наибольшее значение функции

\(y = -e^{(x^2 - 12x + 36 + 2\ln 2)}\) .


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Правила ввода функций :

Необходимое условие экстремума функции одной переменной

Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x - первое слагаемое. Тогда (49-x) - второе слагаемое.
Произведение будет максимальным: x·(49-x) → max

Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Проверить, какие стационарные точки входят в заданный отрезок.
  2. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  3. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f"(х)$
  2. Найти стационарные точки, решив уравнение $f"(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})"=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f^"(x)∙g(x)-f(x)∙g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"∙e^x-5x^5∙(e^x)"}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

$f′(x)=cos′(5x)∙(5x)′= - sin(5x)∙5= -5sin(5x)$

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y"=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y"(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ - это точка минимума.

Ответ: $-10,5$

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3