Ряды фурье тригонометрические ряды ортогональность тригонометрической системы тригонометрический ряд фурье достаточные условия разложимости функции в ряд фурье. Тригонометрический ряд

Пусть задан тригонометрический ряд

Чтобы выяснить, сходится ли он, естественно рассмотреть числовой ряд

(2)

мажорирующий, как говорят, ряд (1). Его члены превышают соответственно абсолютные величины членов ряда (1):

.

Отсюда следует, что если ряд (2) сходится, то сходится также ряд (1) для всех и притом абсолютно и равномерно (см. нашу книгу «Высшая математика. Дифференциальное и интегральное исчисление», § 9.8, теорема 1). Но ряд (1) может сходиться без того, чтобы сходился ряд (2). Ведь его члены для каждого при изменении меняют знак (осциллируют) бесконечное число раз, и он может оказаться сходящимся вследствие компенсации положительных членов отрицательными. В общей теории рядов существуют признаки сходимости подобных рядов. Такими признаками являются признаки Дирихле и Абеля (см. § 9.9, теоремы 3, 4 той же книги), хорошо приспособленные к исследованию тригонометрических рядов.

Так или иначе, если установлено, что ряд (1) равномерно сходится, то из того, что его члены суть непрерывные функции периода , следует, что и его сумма

(3)

есть непрерывная функция периода (см. § 9.8, теорема 2 и § 9.9, теорема 2 той же книги) и ряд (3) можно почленно интегрировать.

Ряд (3) можно формально продифференцировать по:

(4)

и составить его мажорирующий ряд

(5)

Снова, если ряд (5) сходится, то ряд (4) сходится и притом равномерно. Больше того, на основании известной теоремы из теории равномерно сходящихся рядов тогда сумма ряда (4) есть производная от суммы ряда (3), т. е.

.

Вообще, если ряд

при некотором натуральном сходится, то ряд (3) законно дифференцировать почленно раз.

Впрочем, надо помнить, что не исключено, что ряд (3) законно продифференцировать и еще один раз (т. е. раз).

Пример. Выяснить, сколько раз можно продифференцировать почленно ряд

В науке и технике часто приходится иметь дело с периодическими процессами: колебательными движениями деталей машин, приборов, движением небесных тел и элементарных частиц, электромагнитными колебаниями и т.д. Математически такие процессы описываются периодическими функциями.

Функция f (x ), определенная на всей числовой оси, кроме, может быть, некоторых точек, называется периодической с периодом Т, если существует такое число Т≠0, что для любого значения х из области определения функции выполняется равенство:

f (x + T ) = f (x ).

Если число Т является периодом функции f (x ), то число Т·п при любом целом п так же будет периодом этой функции.

Наименьший из положительных периодов данной функции называют основным периодом функции.

Например, любую константу можно рассматривать как периодическую функцию с каким угодно периодом. Наиболее известными периодическими функциями с периодом Т = 2π являются тригонометрические функции у = sin х, у = cos х..

Свойства периодических функций

    Сумма, разность, произведение и частное периодических функций с периодом Т есть периодическая функция с тем же периодом.

2. Если функция f (x ) имеет период Т, то функция f (a · x ) имеет период , гдеа ≠0, а = const .

Например, так как функции y = sinx , y = cosx являются периодическими с периодом Т=2π, то функции y = sinkx и y = coskx также являются периодическими и имеют период
. Функцииy = sinkx и у = coskx называют «простыни гармониками».

3. Определенный интеграл от периодической функции по отрезку, который равен периоду, не зависит от положения отрезка интегрирования на оси, т.е. если f (x ) = f (x + T ), тo
.

Геометрически для неотрицательных функций это свойство означаетравенство площадей закрашенных областей фигур (рисунок 2).

Рисунок 2

4.2. Ортогональные системы функций

Рассмотрим несколько вспомогательных понятий, которые потребуются нам в дальнейшем.

Функции f (x ) и φ(х) называются ортогональными на отрезке [а, b ], если они определены, интегрируемы на этом отрезке и выполняется равенство

.

Например, рассмотрим функции f (x )= х и
на отрезке. Они определены и непрерывны на отрезке . Найдем определенный интеграл от произведения этих функций по указанному отрезку:

.

Следовательно, функции f (x ) = x и
ортогональны на отрезке.

Система функций f ,(x ), f 2 (x ),…, f n (x ) называется ортогональной на отрезке [a , b ], если любые две различные функции ортогональны, т.е.

В качестве примера приведем систему {1, cosx , sinx , cos2x , sin2x ,..., cosnx , sinnx ,... }, п Z, которая является ортогональной системой функций на отрезке [-π, π], т.е. является ортогональной системой на отрезке, равном периоду этих функций.

4.3. Гармонические колебания. Тригонометрический ряд

Одним, из важнейших понятий в радиоэлектронике являются электрические колебания. Это колебания напряжения, тока, заряда. Например, радиоволны представляют собой колебания электромагнитного поля. Гармоническим колебанием будем называть любой процесс, который описывается периодической функцией с периодом

или, что равносильно, функцией вида

Эту функцию называют синусоидальной или гармоникой; А - амплитуда колебания, это наибольшее значение размаха колебания; ω -угловая частота, показывает, сколько раз данное периодическое явление повторится за 2π (единицу времени); φ - начальная фаза гармонического колебания.

Если мы сложим периодические функции

частоты которых ω, 2ω,…, k ω,… кратны наименьшей из них, а периоды соответственно равны
, то в результате получим функцию

которая также является периодической с периодом Т, но будет значительно отличаться от синусоидальной функции.

Оказывается, что если взять бесконечное множество простых гармоник, то любую периодическую функцию, с определенными, правда, свойствами, можно представить в виде их суммы или, как говорят, в виде тригонометрического ряда.

Тригонометрическим рядом называется функциональный ряд вида

=
.

Числа а п и b n , где n =1,2,3,..., называют коэффициентами ряда. Свободный член (нулевую гармонику) записывают в виде для единообразия последующих формул.

Для изучения сложного колебания, описываемого функцией f (x ), периодической с периодом Т=2π, можно представить его в виде суммы простых гармонических колебаний, т.е. разложить в функцию в тригонометрический ряд

.

Поставленная задача требует решения трех вопросов:

    При каких условиях периодическую функцию f (x ) с периодом Т можно представить в виде тригонометрического ряда?

    Единственно ли это разложение?

    Как вычислить коэффициенты этого ряда?

Мы начнем с решения последних двух вопросов.

Тригонометрические ряды Определение. Функция /(ж), определенная на неограниченном множестве D, называется периодической, если существует число Т Ф 0 такое, что для каждого ж.€ D выполняется условие. Наименьшее из таких чисел Т называется периодом функции f(x). Пример 1. Функция определенная на интервале является периодической, так как существует число Т = 2* ф О такое, что для всех х выполняется условие. Таким образом, функция sin х имеет период Т = 2ж. То же самое относится и к функции Пример 2. Функция определенная на множестве D чисел является периодической, так как существует число Т Ф 0, а именно, Т = такое, что для х 6 D имеем Определение. Функциональный ряд вида ао РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье называется тригонометрическим рядом, а постоянные а0, а„, Ьп (n = 1, 2,...) называются коэффициентами тригонометрического ряда (1). Частичные суммы 5п(ж) тригонометрического ряда (1) являются линейными комбинациями функций из системы функций которая называется тригонометрической системой. Так как членами этого ряда являются периодические функции с периодом 2л-, то в случае сходимости ряда (I) его сумма S(x) будет периодической функцией с периодом Т = 2тт: Определение. Разложить периодическую функцию f(x) с периодом Т = 2п в тригонометрический ряд (1) означает найти сходящийся тригонометрический ряд, сумма которого равна функции /(х). . Ортогональность тригонометрической системы Определение. Функции f(x) и д(х), непрерывные на отрезке [а, 6], называются ортогональными на этом отрезке, если выполнено условие Например, функции ортогональны на отрезке [-1,1], так как Определение. Конечная или бесконечная система функций, интегрируемых на отрезке [а, Ъ], называется ортогональной системой на отрезке [а, 6), если для любых номеров тип таких, что т Ф п, выполняется равенство Теорема 1. Тригонометрическая система ортогональна на отрезке При любом целом п Ф О имеем С помощью известных формул тригонометрии для любых натуральных m и n, m Ф n, находим: Наконец, в силу формулы для любых целых тип получаем Тригонометрический ряд Фурье Поставим себе задачей вычислить коэффициенты тригонометрического ряда (1), зная функцию Теорема 2. Пусть равенство имеет место для всех значений х, причем ряд в правой части равенства сходится равномерно на отрезке [-зг, х]. Тогда справедливы формулы Из равномерной сходимости ряда (1) вытекает непрерывность, а значит, и интегрируемость функции /(х). Поэтому равенства (2) имеют смысл. Более того, ряд (1) можно почленно интегрировать. Имеем откуда и следует первая из формул (2) для п = 0. Умножим теперь обе части равенства (1) на функцию cos mi, где т - произвольное натуральное число: Ряд (3), как и ряд (1), сходится равномерно. Поэтому его можно интегрировать почленно, Все интегралы в правой части, кроме одного, который получается при п = т, равны нулю в силу ортогональности тригонометрической системы. Поэтому откуда Аналогично, умножая обе части равенства (1) на sinmx и интегрируя от -тг до т, получим откуда Пусть дана произвольная периодическая функция f(x) периода 2*, интегрируемая на отрезке *]. Можно ли ее представить в виде суммы некоторого сходящегося тригонометрического ряда, заранее неизвестно. Однако по формулам (2) можно вычислить постоянные а„ и Ьп. Определение. Тригонометрический ряд коэффициенты oq, ап, Ь„ которого определяются через функцию f(x) по формулам РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье называется тригонометрическим рядом Фурье функции f(x), а коэффициенты а„, bnt определяемые по этим формулам, называются коэффициентами Фурье функции /(ж). Каждой интегрируемой на отрезке [-тг, -к] функции f(x) можно поставить в соответствие ее ряд Фурье т.е. тригонометрический ряд, коэффициенты которого определяются по формулам (2). Однако если от функции f(x) не требовать ничего, кроме интегрируемости на отрезке [--я*, тг], то знак соответствия в последнем соотношении, вообще говоря, нельзя заменить знаком равенства. Замечание. Часто требуется разложить в тригонометрический ряд функцию /(х), определенную только на отрезке (-*, п\ и, следовательно, не являющуюся периодической. Так как в формулах (2) для коэффициентов Фурье интегралы вычисляются по отрезку *], то для такой функции тоже можно написать тригонометрический ряд Фурье. Вместе с тем, если продолжить функцию f(x) периодически на всю ось Ох, то получим функцию F(x), периодическую с периодом 2п, совпадающую с /(х) на интервале (-ir, л): . Эту функцию F(x) называют периодически.^ продагжением функции /(х). При этом функция F(x) не имеет однозначного определения в точках х = ±п, ±3гг, ±5тг,.... Ряд Фурье для функции F(x) тождествен ряду Фурье для функции /(х). К тому же, если ряд Фурье для функции /(х) сходится к ней, то его сумма, являясь периодической функцией, дает периодическое продолжение функции /(х) с отрезка |-jt, п\ на всю ось Ох. В этом смысле говорить о ряде Фурье для функции /(х), определенной на отрезке (-я-, jt|, равносильно тому, что говорить о ряде Фурье для функции F(x), являющейся периодическим продолжением функции /(х) на всю ось Ох. Отсюда следует, что признаки сходимости рядов Фурье достаточно сформулировать для периодических функций. §4. Достаточные условия разложимости функции в ряд Фурье Приведем достаточный признак сходимости ряда Фурье, т. е. сформулируем условия на заданную функцию, при выполнении которых построенный по ней ряд Фурье сходится, и выясним, как при этом ведет себя сумма этого ряда. Важно подчеркнуть, что хотя приведенный ниже класс кусочно-монотонных функций и является достаточно широким, функции, ряд Фурье для которых сходится, им не исчерпываются. Определение. Функция f(x) называется кусочно-монотонной на отрезке [а, 6], если этот отрезок можно разбить конечным числом точек на интервалы, на каждом из которых f(x) монотонна, т.е. либо не убывает, либо не возрастает (см. рис. 1). Пример 1. Функция является кусочно-монотонной на интервале (-оо,оо), так как этот интервал можно разбить на два интервала (-сю, 0) и (0, +оо), на первом из которых она убывает (и значит, не возрастает), а на втором возрастает (и значит, не убывает). Пример 2. Функция кусочно-монотонна на отрезке [-зг, jt|, так как этот отрезок можно разбить на два интервала на первом из которых cos я возрастает от -I до +1, а на втором убывает от. Теорема 3. Функция f(x), кусочно-монотонная и ограниченная на отрезке (а, Ь], может иметь на нем только точки разрыва первого рода. Л Пусть, например, - точка разрыва функции /(ж). Тогда в силу ограниченности функции f(x) и монотонности по обе стороны отточки с существуют конечные односторонние пределы Это означает, что точка с есть точка разрыва первого рода (рис. 2). Теорема 4. Если периодическая функция /(ж) с периодом 2тг кусочно-монотонна и ограничена на отрезке [-т, т), то ее ряд Фурье сходится в каждой точке х этого отрезка, причем для суммы этого ряда выполняются равенства: ПрммерЗ. Функция /(z) периода 2jt, определяемая на интервале (-*,*) равенством (рис. 3), удовлетворяет условиям теоремы. Поэтому ее можно разложить в ряд Фурье. Находим для нее коэффициенты Фурье: Ряд Фурье для данной функции имеет вид Пример 4. Разложить функцию в ряд Фурье (рис.4) на интервале Данная функция удовлетворяет условиям теоремы. Найдем коэффициенты Фурье. Используя свойство аддитивности определенного интеграла, будем иметь РЯДЫ ФУРЬЕ Тригонометрические ряды Ортогональность тригонометрической системы Тригонометрический ряд Фурье Достаточные условия разложимости функции в ряд Фурье Следовательно, ряд Фурье имеет следующий вид: На концах отрезка (-я, ir], т. е. в точках х = -х и х = х, которые являются точками разрыва первого рода, будем иметь Замечание. Если в найденном ряде Фурье положить х = 0, то получим откуда

Вводные замечания

В данном разделе будет рассмотрено представление периодических сигналов при помощи ряда Фурье. Ряды Фурье являются основой теории спектрального анализа, потому что, как мы увидим позже, преобразование Фурье непериодического сигнала можно получить как предельный переход ряда Фурье при бесконечном периоде повторения. В результате свойства ряда Фурье также справедливы и для преобразования Фурье непериодических сигналов.

Мы рассмотрим выражения ряда Фурье в тригонометрической и комплексной форме, а также уделим внимание условиям Дирихле сходимости ряда Фурье. Кроме того, мы подробно остановимся на пояснении такого понятия как отрицательная частота спектра сигнала, которое часто вызывает сложность при знакомстве с теорией спектрального анализа.

Периодический сигнал. Тригонометрический ряд Фурье

Пусть имеется периодический сигнал непрерывного времени , который повторяется с периодом с, т.е. , где — произвольное целое число.

В качестве примера на рисунке 1 показана последовательность прямоугольных импульсов длительности c, повторяющиеся с периодом с.

Рисунок 1. Периодическая последовательность

Прямоугольных импульсов

Из курса математического анализа известно , что система тригонометрических функций


с кратными частотами , где рад/с, — целое число, образует ортонормированный базис для разложения периодических сигналов с периодом , удовлетворяющих условиям Дирихле .

Условия Дирихле сходимости ряда Фурье требуют, чтобы периодический сигнал был задан на сегменте , при этом удовлетворял следующим условиям:

Например, периодическая функция не удовлетворяет условиям Дирихле, потому что функция имеет разрывы второго рода и принимает бесконечные значения при , где — произвольное целое. Таким образом, функция не может быть представлена рядом Фурье. Также можно привести пример функции , которая является ограниченной, но также не удовлетворяет условиям Дирихле, поскольку имеет бесконечное число точек экстремума при приближении к нулю. График функции показан на рисунке 2.

Рисунок 2. График функции :

А — два периода повторения; б — в окрестности

На рисунке 2а показано два периода повторения функции , а на рисунке 2б — область в окрестности . Можно видеть, что при приближении к нулю, частота колебаний бесконечно возрастает, и такая функция не может быть представлена рядом Фурье, потому что она не является кусочно-монотонной.

Необходимо заметить, что на практике не бывает сигналов с бесконечными значениями тока или напряжения. Функции с бесконечным числом экстремумов типа также в прикладных задачах не встречаются. Все реальные периодические сигналы удовлетворяют условиям Дирихле и могут быть представлены бесконечным тригонометрическим рядом Фурье вида:


В выражении (2) коэффициент задает постоянную составляющую периодического сигнала .

Во всех точках, где сигнал непрерывен, ряд Фурье (2) сходится к значениям данного сигнала, а в точках разрыва первого рода — к среднему значению , где и — пределы слева и справа от точки разрыва соответственно.

Также из курса математического анализа известно , что использование усеченного ряда Фурье, содержащего только первых членов вместо бесконечной суммы, приводит к приближенному представлению сигнала :


при котором обеспечивается минимум среднего квадрата ошибки. Рисунок 3 иллюстрирует приближение периодической последовательности прямоугольных импульсов и периодического пилообразного сигнала при использовании различного количества членов ряда Фурье .

Рисунок 3. Приближение сигналов усеченным рядом Фурье:

А — прямоугольных импульсов; б — пилообразного сигнала

Ряд Фурье в комплексной форме

В предыдущем параграфе мы рассмотрели тригонометрический ряд Фурье для разложения произвольного периодического сигнала , удовлетворяющего условиям Дирихле. Применив формулу Эйлера, можно показать:


Тогда тригонометрический ряд Фурье (2) с учетом (4):

Таким образом, периодический сигнал может быть представлен суммой постоянной составляющей и комплексных экспонент, вращающихся с частотами с коэффициентами для положительных частот , и для комплексных экспонент, вращающихся с отрицательными частотами .

Рассмотрим коэффициенты для комплексных экспонент, вращающихся с положительными частотами :

Выражения (6) и (7) совпадают, кроме того постоянную составляющую также можно записать через комплексную экспоненту на нулевой частоте:

Таким образом, (5) с учетом (6)-(8) можно представить как единую сумму при индексации от минус бесконечности до бесконечности:


Выражение (9) представляет собой ряд Фурье в комплексной форме. Коэффициенты ряда Фурье в комплексной форме связаны с коэффициентами и ряда в тригонометрической форме, и определяются как для положительных, так и для отрицательных частот . Индекс в обозначении частоты указывает номер дискретной гармоники, причем отрицательные индексы соответствуют отрицательным частотам .

Из выражения (2) следует, что для вещественного сигнала коэффициенты и ряда (2) также являются вещественными. Однако (9) ставит в соответствие вещественному сигналу , набор комплексно-сопряженных коэффициентов , относящихся как положительным, так и к отрицательным частотам .

Некоторые пояснения к ряду Фурье в комплексной форме

В предыдущем параграфе мы осуществили переход от тригонометрического ряда Фурье (2) к ряду Фурье в комплексной форме (9). В результате, вместо разложения периодических сигналов в базисе вещественных тригонометрических функций, мы получили разложение в базисе комплексных экспонент, с комплексными коэффициентами , да еще и появились отрицательные частоты в разложении! Поскольку данный вопрос часто встречает непонимание, то необходимо дать некоторые пояснения.

Во-первых, работать с комплексными экспонентами в большинстве случаев проще, чем с тригонометрическими функциями. Например, при умножении и делении комплексных экспонент достаточно лишь сложить (вычесть) показатели, в то время как формулы умножения и деления тригонометрических функций более громоздкие.

Дифференцировать и интегрировать экспоненты, пусть даже комплексные, также проще, чем тригонометрические функции, которые постоянно меняются при дифференцировании и интегрировании (синус превращается в косинус и наоборот).

Если сигнал периодический и вещественный, то тригонометрический ряд Фурье (2) кажется более наглядным, потому что все коэффициенты разложения , и остаются вещественными. Однако, часто приходится иметь дело с комплексными периодическими сигналами (например, при модуляции и демодуляции используют квадратурное представление комплексной огибающей). В этом случае при использовании тригонометрического ряда Фурье все коэффициенты , и разложения (2) станут комплексными, в то время как при использовании ряда Фурье в комплексной форме (9) будет использованы одни и те же коэффициенты разложения как для вещественных, так и для комплексных входных сигналов.

Ну и наконец, необходимо остановится на пояснении отрицательных частот, которые появились в (9). Этот вопрос часто вызывает непонимание. В повседневной жизни мы не сталкиваемся с отрицательными частотами. Например, мы никогда не настраиваем свой радиоприемник на отрицательную частоту. Давайте рассмотрим следующую аналогию из механики. Пусть имеется механический пружинный маятник, который совершает свободные колебания с некоторой частотой . Может ли маятник колебаться с отрицательной частотой ? Конечно нет. Как не бывает радиостанций, выходящих в эфир на отрицательных частотах, так и частота колебаний маятника не может быть отрицательной. Но пружинный маятник — одномерный объект (маятник совершает колебания вдоль одной прямой).

Мы можем также привести еще одну аналогию из механики: колесо, вращающееся с частотой . Колесо, в отличие от маятника вращается, т.е. точка на поверхности колеса перемещается в плоскости, а не просто совершает колебания вдоль одной прямой. Поэтому для однозначного задания вращения колеса, задать частоту вращения недостаточно, потому что необходимо задать также направление вращения. Вот именно для этого мы и можем использовать знак частоты.

Так, если колесо вращается с частотой рад/с против часовой стрелки, то считаем, что колесо вращается с положительной частотой, а если по направлению часовой стрелки, то частота вращения будет отрицательной. Таким образом, для задания вращения отрицательная частота перестает быть бессмыслицей и указывает направление вращения.

А теперь самое главное, что мы должны понять. Колебание одномерного объекта (например, пружинного маятника) может быть представлено как сумма вращений двух векторов, показанных на рисунке 4.

Рисунок 4. Колебание пружинного маятника

Как сумма вращений двух векторов

на комплексной плоскости

Маятник совершает колебания вдоль вещественной оси комплексной плоскости с частотой по гармоническому закону . Движение маятника показано горизонтальным вектором. Верхний вектор совершает вращения на комплексной плоскости с положительной частотой (против часовой стрелки), а нижний вектор вращается с отрицательной частотой (по направлению часовой стрелки). Рисунок 4 наглядно иллюстрирует хорошо известное из курса тригонометрии соотношение:

Таким образом, ряд Фурье в комплексной форме (9) представляет периодические одномерные сигналы как сумму векторов на комплексной плоскости, вращающихся с положительными и отрицательными частотами. При этом обратим внимание, что в случае вещественного сигнала согласно (9) коэффициенты разложения для отрицательных частот являются комплексно-сопряженными соответствующим коэффициентам для положительных частот . В случае комплексного сигнала это свойство коэффициентов не выполняется ввиду того, что и также являются комплексными.

Спектр периодических сигналов

Ряд Фурье в комплексной форме представляет собой разложение периодического сигнала в сумму комплексных экспонент, вращающихся с положительными и отрицательными частотами кратными рад/c с соответствующими комплексными коэффициентами , которые определяют спектр сигнала . Комплексные коэффициенты могут быть представлены по формуле Эйлера как , где — амплитудный спектр, a — фазовый спектр.

Поскольку периодические сигналы раскладываются в ряд только на фиксированной сетке частот , то спектр периодических сигналов является линейчатым (дискретным).

Рисунок 5. Спектр периодической последовательности

Прямоугольных импульсов:

А — амплитудный спектр; б — фазовый спектр

На рисунке 5 приведен пример амплитудного и фазового спектра периодической последовательности прямоугольных импульсов (см. рисунок 1) при с, длительности импульса c и амплитуде импульсов В.

Амплитудный спектр исходного вещественного сигнала является симметричным относительно нулевой частоты, а фазовый спектр — антисимметричным. При этом заметим, что значения фазового спектра и соответствуют одной и той же точке комплексной плоскости .

Можно сделать вывод, что все коэффициенты разложения приведенного сигнала являются чисто вещественными, и фазовый спектр соответствует отрицательным коэффициентам .

Обратим внимание, что размерность амплитудного спектра совпадает с размерностью сигнала . Если описывает изменение напряжения во времени, измеряемое в вольт, то амплитуды гармоник спектра также будут иметь размерность вольт.

Выводы

В данном разделе рассмотрено представление периодических сигналов при помощи ряда Фурье. Приведены выражения для ряда Фурье в тригонометрической и комплексной формах. Мы уделили особое внимание условиям Дирихле сходимости ряда Фурье и были приведены примеры функций, для которых ряд Фурье расходится.

Мы подробно остановились на выражении ряда Фурье в комплексной форме и показали, что периодические сигналы как вещественные, так и комплексные представляются рядом комплексных экспонент с положительными и отрицательными частотами. При этом коэффициенты разложения являются также комплексными и характеризуют амплитудный и фазовый спектр периодического сигнала.

В следующем разделе мы более детально рассмотрим свойства спектров периодических сигналов.

Программная реализация в библиотеке DSPL

Дёч, Г. Руководство по практическому применению преобразования Лапласа. Москва, Наука, 1965, 288 c.

Определение. Тригонометрическим рядом называется ряд вида:

или, короче,

Действительные числа a i , b i называются коэффициентами тригонометрического ряда.

Если ряд представленного выше типа сходится, то его сумма представляет собой периодическую функцию с периодом 2, т.к. функции sinnx и cosnx также периодические функции с периодом 2.

Пусть тригонометрический ряд равномерно сходится на отрезке [-; ], а следовательно, и на любом отрезке в силу периодичности, и его сумма равна f(x).

Определим коэффициенты этого ряда.

Для решения этой задачи воспользуемся следующими равенствами:

Справедливость этих равенств вытекает из применения к подынтегральному выражению тригонометрических формул. Подробнее см. Интегрирование тригонометрических функций.

Т.к. функция f(x) непрерывна на отрезке [-; ], то существует интеграл

Такой результат получается в результате того, что .

Отсюда получаем:

Аналогично умножаем выражение разложения функции в ряд на sinnx и интегрируем в пределах от - до.

Получаем:

Выражение для коэффициента а 0 является частным случаем для выражения коэффициентов a n .

Таким образом, если функция f(x) – любая периодическая функция периода 2, непрерывная на отрезке [-; ] или имеющая на этом отрезке конечное число точек разрыва первого рода, то коэффициенты

существуют и называются коэффициентами Фурье для функции f(x).

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда называются функции

Определение. Функциональный ряд называется сходящимся в точке (х=х 0), если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой рядав точке х 0 .

Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда.

Определение. Ряд называется равномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа >0 существовал такой номерN(), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке .

Определение. Рядом Фурье для функции f(x) называется тригонометрический ряд, коэффициенты которого являются коэффициентами Фурье. Если ряд Фурье функции f(x) сходится к ней во всех ее точках непрерывности, то говорят, что функция f(x) разлагается в ряд Фурье.

Достаточные признаки разложимости в ряд Фурье.

Теорема. (Теорема Дирихле) Если функция f(x) имеет период 2 и на отрезке

[-;] непрерывна или имеет конечное число точек разрыва первого рода, и отрезок

[-;] можно разбить на конечное число отрезков так, что внутри каждого из них функция f(x) монотонна, то ряд Фурье для функции f(x) сходится при всех значениях х, причем в точках непрерывности функции f(x) его сумма равна f(x), а в точках разрыва его сумма равна , т.е. среднему арифметическому предельных значений слева и справа. При этом ряд Фурье функцииf(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

Функция f(x), для которой выполняются условия теоремы Дирихле называется кусочно – монотонной на отрезке [-;].

Теорема. Если функция f(x) имеет период 2, кроме того, f(x) и ее производная f’(x) – непрерывные функции на отрезке [-;] или имеют конечное число точек разрыва первого рода на этом отрезке, то ряд Фурье функции f(x) сходится при всех значениях х, причем в точках непрерывности его сумма равна f(x), а в точках разрыва она равна . При этом ряд Фурье функцииf(x) сходится равномерно на любом отрезке, который принадлежит интервалу непрерывности функции f(x).

Функция, удовлетворяющая условиям этой теоремы, называется кусочно – гладкой на отрезке [-;].