Водяные пары в атмосфере. Что такое водяной пар? В чем находится водяной пар

До настоящего времени объектом наших исследований были идеальные газы, т.е. такие газы, где отсутствуют силы межмолекулярных взаимодействий и пренебрегается размерами молекул. На самом деле размеры молекул и силы межмолекулярных взаимодействий имеют большое значение, особенно при низких температурах и больших давлениях.

Одним из представителей реальных газов, применяемых в практике пожарного дела и широко применяемых в промышленном производстве, является водяной пар.

Водяной пар чрезвычайно широко применяется в различных отраслях промышленности, главным образом в качестве теплоносителя в теплообменных аппаратах и как рабочее тело в паросиловых установках. Это объясняется повсеместным распространением воды, ее дешевизной и безвредностью для здоровья человека.

Имея высокое давление и относительно низкую температуру, пар, используемый на практике близок к состоянию жидкости, поэтому пренебрегать силами сцепления между его молекулами и их объемом, как в идеальных газах, нельзя. Следовательно, не представляется возможным использовать для определения параметров состояния водяного пара уравнения состояния идеальных газов, т. е. для пара pv≠RT, ибо водяной пар есть реальный газ.

Попытки ряда ученых (Ван-дер-Ваальса, Бертло, Клаузиуса и др.) уточнить уравнения состояния реальных газов путем введения поправок в уравнение состояния для идеальных газов не увенчались успехом, так как эти поправки относились только к объему и силам сцепления между молекулами реального газа и не учитывали ряда других физических явлений, происходящих в этих газах.

Особую роль играет уравнение, предложенное Ван-дер-Ваальсом в 1873 г., (P + a/ v 2)( v - b) = RT . Являясь приближенным при количественных расчетах, уравнение Ван-дер-Ваальса качественно хорошо отображает физические особенности газов, так как позволяет описать общую картину изменения состояния вещества с переходом его в отдельные фазовые состояния. В этом уравнении а и в для данного газа являются постоянными величинами, учитывающими: первая - силы взаимодействия, а вторая - размер молекул. Отношение а/v 2 характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами. Величина в учитывает уменьшение объема, в котором движутся молекулы реального газа, вследствие того, что они сами обладают объемом.

Наиболее известны в настоящее время уравнение, разработанное в 1937-1946 гг. американским физиком Дж. Майером и независимо от него советским математиком Н. Н. Боголюбовым, а также уравнение предложенное советскими учеными М. П. Вукаловичем и И. И. Новиковым в 1939 г.

Ввиду громоздкости эти уравнения рассматриваться не будут.


Для водяного пара все параметры состояния для удобства пользования сведены в таблицы и представлены в приложении 7.

Итак, водяным паром называется получающийся из воды реальный газ с относительно высокой критической температурой и близкий к состоянию насыщения.

Рассмотрим процесс превращения жидкости в пар, называемый иначе процессом парообразования . Жидкость может превращаться в пар при испарении и кипении.

Испарением называется парообразование, происходящее только с поверхности жидкости и при любой температуре . Интенсивность испарения зависит от природы жидкости и ее температуры. Испарение жидкости может быть полным, если над жидкостью находится неограниченное пространство. В Природе процесс испарения жидкости осуществляется в гигантских масштабах в любое время года.

Суть процесса испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие большей по сравнению с другими молекулами кинетической энергией, преодолевая силовое действие соседних молекул, создающее поверхностное натяжение, вылетают из жидкости в окружающее пространство. С увеличением температуры интенсивность испарения возрастает, так как увеличиваются скорость и энергия молекул и уменьшаются силы их взаимодействия. При испарении температура жидкости снижается, так как из нее вылетают молекулы, обладающие сравнительно большими скоростями, вследствие чего уменьшается средняя скорость оставшихся в ней молекул.

При сообщении жидкости теплоты повышаются ее температура и интенсивность испарения. При некоторой вполне определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей ее массе . При этом устенок сосуда и внутри жидкости образуются пузырьки пара. Это явление называется кипением жидкости. Давление получающегося при этом пара такое же, как и среды, в которой происходит кипение.

Процесс, обратный парообразованию называется конденсацие й . Этот процесс превращения пара в жидкость так же происходит при постоянной температуре, если давление остается постоянным. При конденсации хаотично движущиеся молекулы пара, соприкасаясь с поверхностью жидкости попадают под влияние межмолекулярных сил воды, остаются там, вновь преобразуясь в жидкость. Т.к. молекулы пара имеют большую по сравнению с молекулами жидкости скорость, то при конденсации температура жидкости увеличивается. Жидкость, образующаяся при конденсации пара, называется конденсатом .

Рассмотрим процесс парообразования более подробно.

Переход жидкости в пар имеет три стадии:

1. Нагревание жидкости до температуры кипения.

2. Парообразование.

3. Перегрев пара.

Остановимся на каждой стадии более подробно.

Возьмём цилиндр с поршнем, поместим туда 1 кг воды при температуре 0°С, условно принимая, что удельный объём воды при этой температуре минимален 0.001 м 3 /кг. На поршень положен груз, который вместе с поршнем оказывает на жидкость постоянное давление Р. Этому состоянию соответствует точка 0. Начнём подводить к этому цилиндру тепло.

Рис. 28. График изменения удельного объёма парожидкостной смеси при давлении насыщения P s .

1. Процесс подогрева жидкости . В этом процессе, осуществляемом при постоянном давлении за счёт теплоты, сообщаемой жидкости, происходит её нагрев от 0 °С до температуры кипения t s . Т.к. вода имеет сравнительно небольшой коэффициент термического расширения, то удельный объём жидкости изменится незначительно и увеличится от v 0 до v¢. Этому состоянию соответствует точка 1, а процессу – отрезок 0-1.

2. Процесс парообразования . При дальнейшем подводе тепла вода будет кипеть и переходить в газообразное состояние, т.е. водяной пар. Этому процессу соответствует отрезок 1-2 и увеличение удельного объёма от v¢ до v¢¢. Процесс парообразования происходит не только при постоянном давлении, но и при постоянной температуре, равной температуре кипения. При этом вода в цилиндре будет находиться уже в двух фазах: пара и жидкости. Вода присутствует в виде жидкости, сосредоточенной внизу цилиндра и в виде мельчайших капелек, равномерно распределённой по всему объёму.

Процесс парообразования сопровождается и обратным процессом, называемым конденсацией. Если скорость конденсации станет равной скорости испарения, то в системе наступает динамическое равновесие. Пар в этом состоянии имеет максимальную плотность и называется насыщенным. Следовательно, под насыщенным понимают пар, находящийся в равновесном состоянии с жидкостью, из которой он образуется . Основное свойство этого пара состоит в том, что он имеет температуру, являющуюся функцией его давления, одинакового с давлением той среды, в которой происходит кипение. Поэтому температура кипения иначе называется температурой насыщения и обозначается t н.Давление, соответствующее t н, называется давлением насыщения (обозначается р н или просто p. Пар образуется до тех пор, пока не испарится последняя капля жидкости. Этому моменту будет соответствовать состояние сухого насыщенного (или просто сухого ) пара. Пар, получаемый при неполном испарении жидкости, называется влажным насыщенным паром или просто влажным . Он является смесью сухого пара с капельками жидкости, распространенными равномерно во всей его массе и находящимися в нем во взвешенном состоянии. Массовая доля сухого пара во влажном паре называется степенью сухости или массовым паросодержанием и обозначается через х. Массовая доля жидкости во влажном паре называется степенью влажности и обозначается через у. Очевидно, что у = 1 - х. Степень сухости и степень влажности выражают или в долях единицы, или в %: например, если х = 0.95 и у = 1 - х = 0.05, то это означает, что в смеси находится 95% сухого пара и 5% кипящей жидкости.

3. Перегрев пара. При дальнейшем подводе тепла температура пара будет повышаться (соответственно увеличивается удельный объём от v¢¢ до v¢¢¢). Этому состоянию соответствует отрезок 2-3. Если температура пара выше температуры насыщенного пара того же давления, то такой пар называется перегретым . Разность между температурой перегретого пара и температурой насыщенного пара того же давления называется степенью перегрев а .

Поскольку удельный объем перегретого пара больше удельного объема насыщенного пара (так как р= const, t пер > t н), то плотность перегретого пара меньше плотности насыщенного пара. Поэтому перегретый пар является ненасыщенным. По своим физическим свойствам перегретый пар приближается к газам и тем больше, чем выше степень его перегрева.

Из опыта найдены положения точек 0 - 2 при других, более высоких давлениях насыщения. Соединив соответствующие точки при различных давлениях, получим диаграмму состояния водяного пара.

Рис. 29. pv – диаграмма состояния водяного пара.

Из анализа диаграммы видно, что по мере увеличения давления удельный объём жидкости уменьшается. На диаграмме этому уменьшению объёма с ростом давления соответствует линия СД. Температура насыщения, и, следовательно, удельный объём увеличиваются, что и продемонстрировано линией АК. Также быстрее происходит испарение воды, что ясно видно из линии ВК. При увеличении давления уменьшается разность между v¢ и v¢¢, постепенно сближаются линии АК и ВК. При некотором вполне определённом для каждого вещества давлении эти линии сходятся в одной точке К, называемой критической. Точка К, одновременно принадлежащая линии жидкости при температуре кипения АК и линии сухого насыщенного пара ВК, соответствует некоторому предельному критическому состоянию вещества, при котором отсутствует различие между паром и жидкостью. Параметры состояния называются критическими и обозначаются Т к, P к, v к. Для воды критические параметры имеют значения: Т к =647.266К, Р к = 22.1145МПа, v к =0.003147 м 3 /кг.

Состояние, в котором могут находиться в равновесии все три фазы воды, называется тройной точкой воды. Для воды: Т 0 = 273.16К, Р 0 = 0.611 кПа, v 0 = 0.001 м 3 /кг. В термодинамике удельные энтальпия, энтропия и внутренняя энергия в тройной точке принимается равной нулю, т.е. i 0 = 0, s 0 = 0, u 0 = 0.

Определим основные параметры водяного пара

1. Подогрев жидкости

Количество теплоты, необходимое для нагревания 1 кг жидкости от 0 °С до температуры кипения называется удельнойтеплотой жидкости . Теплота жидкости является функцией давления, принимающей максимальное значение при критическом давлении.

Величина её определяется:

q = с р (t s -t 0) ,

где с р – средняя массовая изобарная теплоёмкость воды в интервале температур от t 0 = 0 °С до t s , берётся по справочным данным

т.е. q = с р t s

Удельная теплота измеряется в Дж/кг

Величина q выражается как

где i¢ - энтальпия воды при температуре кипения;

i - энтальпия воды при 0 °С.

Согласно первому закону термодинамики

i = u 0 + P s v 0 ,

где u 0 – внутренняя энергия при 0 °С.

i¢ = q + u 0 + P s v 0

Примем условно, как и в случае идеальных газов, что u 0 = 0. Тогда

i¢ = q + P s v 0

Эта формула позволяет вычислить величину i¢ по найденным из опыта величинам Р s , v 0 и q.

При невысоких давлениях Р s , когда для воды величина Р s v 0 мала по сравнению с теплотой жидкости, можно приближённо принять

Теплота жидкости с увеличением давления насыщения увеличивается и в критической точке достигает максимальной величины. Учитывая, что i=u+ Pv (1), можно написать следующее выражение для внутренней энергии воды при температуре кипения:

u¢ = i¢ + P s v¢

Изменение энтропии в процессе подогрева жидкости


Допуская, что энтропия воды при 0


Эта формула позволяет вычислить энтальпию жидкости при температуре кипения.

2. Парообразование

Количество теплоты, необходимое для перевода 1 кг жидкости, нагретой до температуры кипения, в сухой насыщенный пар в изобарном процессе называется удельной теплотой парообразования (r) .

Теплота парообразования определяется:

i¢¢ = r + i¢ по найденной из опыта теплоте парообразования и энтальпии воды при температуре кипения i¢. Учитывая (1), можно записать:

r = (u¢¢-u¢)+P s (v¢¢-v¢),

где u¢ и u¢¢ - внутренняя энергия воды при температуре кипения и сухого насыщенного пара. Это уравнение показывает, что теплота парообразования состоит из двух частей. Одна часть (u¢¢-u¢) затрачивается на увеличение внутренней энергии образующегося из воды пара. Она называется внутренней теплотой парообразования и обозначается буквой r. Другая часть P s (v¢¢-v¢) затрачивается на внешнюю работу, совершаемую паром в изобарном процессе кипения воды, и называется внешней теплотой парообразования (y).

Теплота парообразования уменьшается с увеличением давления насыщения и в критической точке равна нулю. Теплота жидкости и теплота парообразования образуют полную теплоту сухого насыщенного пара l¢¢.

Внутренняя энергия сухого насыщенного пара u¢¢ равна

u¢¢=i¢¢-P s v¢¢

Изменение энтропии пара в процессе парообразования определяется выражением


Это выражение позволяет определить энтропию сухого насыщенного пара s¢¢.

Влажный насыщенный пар между граничными величинами удельных объёмов v¢ и v¢¢ состоит из сухого насыщенного пара и воды. Количество сухого насыщенного пара в 1 кг влажного насыщенного пара называется степенью сухости , или паросодержанием . Эта величина называется буквой x . Величина (1-x) называется степенью влажности пара .

Если учесть степень сухости, то удельный объём влажного насыщенного пара v x

v x = v¢¢x + v¢(1-x)

Теплота парообразования r x , энтальпия i x , полная теплота l x , внутренняя энергия u x и энтропия s x для влажного насыщенного пара имеет следующие величины:

r x = rx; i x = i¢ + rx; l x = q + rx; u x = i¢ + rx – p s v s ; s x = s¢ + rx/T s

3. Процесс перегрева пара

Сухой насыщенный пар перегревается при постоянном давлении от температуры кипения t s до заданной температуры t ; при этом удельный объём пара увеличивается от до v . Количество теплоты, которое затрачивается на перегрев 1 кг сухого насыщенного пара от температуры кипения до данной температуры, называется теплотой пароперегрева. Теплоту пароперегрева можно определить:

где - с p средняя массовая теплоёмкость пара в интервале температур t s – t (определяется по справочным данным).

Для величины q п можно записать

q п = i – i¢ ,

где I – энтальпия перегретого пара.

Промежуточное состояние вещества между состоянием реального газа и жидкостью принято называть парообразным или просто паром. Превращение жидкости в пар представляет собой фазовый переход из одного агрегатного состояния в другое. При фазовом переходе наблюдается скачкообразное изменение физических свойств вещества.

Примерами таких фазовых переходов является процесс кипения жидкости с появлением влажного насыщенного пара и последующим переходом его в лишенный влаги сухой насыщенный пар или обратный кипению процесс конденсации насыщенного пара.

Одно из основных свойств сухого насыщенного пара заключается в том, что дальнейший подвод теплоты к нему приводит к возрастанию температуры пара, т. е. перехода его в состояние перегретого пара, а отвод теплоты — к переходу в состояние влажного насыщенного пара. В

Фазовые состояния воды

Рисунок 1. Фазовая диаграмма для водяного пара в T, s координатах.

Область I – газообразное состояние (перегретый пар, обладающий свойствами реального газа);

Область II – равновесное состояние воды и насыщенного водяного пара (двухфазное состояние). Область II также называют областью парообразования;

Область III – жидкое состояние (вода). Область III ограничена изотермой ЕК;

Область IV – равновесное состояние твердой и жидкой фаз;

Область V – твердое состояние;

Области III, II и I разделены пограничными линиями AK (левая линия) и KD (правая линия). Общая точка K для пограничных линий AK и KD обладает особыми свойствами и называется критической точкой . Эта точка имеет параметры p кр , v кр и Т кр , при которых кипящая вода переходит в перегретый пар, минуя двухфазную область. Следовательно, вода не может существовать при температурах выше Т кр.

Критическая точка К имеет параметры:

p кр = 22,136 МПа; v кр = 0,00326 м 3 /кг; t кр = 374,15 °С.


Значения p, t, v и s для обеих пограничных линий приводятся в специальных таблицах термодинамических свойств водяного пара.

Процесс получения водяного пара из воды

На рисунках 2 и 3 изображены процессы нагрева воды до кипения, парообразования и перегрева пара в p, v — и T, s -диаграммах.

Начальное состояние жидкой воды, находящейся под давлением p 0 и имеющей температуру 0 °С, изображается на диаграммах p, v и T, s точкой а . При подводе теплоты при p = const температура ее увеличивается и растет удельный объем. В некоторый момент температура воды достигает температуры кипения. При этом ее состояние обозначается точкой b. При дальнейшем подводе теплоты начинается парообразование с сильным увеличением объема. При этом образуется двухфазная среда — смесь воды и пара, называемая влажным насыщенным паром . Температура смеси не меняется, так как тепло расходуется на испарение жидкой фазы. Процесс парообразования на этой стадии является изобарно-изотермическим и обозначается на диаграмме как участок bc . Затем в некоторый момент времени вся вода превращается в пар, называемый сухим насыщенным . Это состояние обозначается на диаграмме точкой c .

Рисунок 2. Диаграмма p, v для воды и водяного пара.

Рисунок 3. Диаграмма T, s для воды и водяного пара.

При дальнейшем подводе теплоты температура пара будет увеличиваться и будет протекать процесс перегрева пара c — d . Точкой d обозначается состояние перегретого пара. Расстояние точки d от точки с зависит от температуры перегретого пара.

Индексация для обозначения величин, относящихся к различным состояниям воды и пара:

  • величина с индексом «0» относится к начальному состоянию воды;
  • величина с индексом «′» относится к воде, нагретой до температуры кипения (насыщения);
  • величина с индексом «″» относится к сухому насыщенному пару;
  • величина с индексом «x » относится к влажному насыщенному пару;
  • величина без индекса относится к перегретому пару.

Процесс парообразования при более высоком давлении p 1 > p 0 можно отметить, что точка a, изображающая начальное состояние воды при температуре 0 °С и новом давлении, остается практически на той же вертикали, так как удельный объем воды почти не зависит от давления.

Точка b′ (состояние воды при температуре насыщения) смещается вправо на p, v -диаграмме и поднимается вверх на T,s -диаграмме. Это потому, что с увеличением давления увеличивается температура насыщения и, следовательно, удельный объем воды.

Точка c′ (состояние сухого насыщенного пара) смещается влево, т. к. с увеличением давления удельный объем пара уменьшается, несмотря на увеличение температуры.

Соединение множества точек b и c при различных давлениях дает нижнюю и верхнюю пограничные кривые ak и kc. Из p, v -диаграммы видно, что по мере увеличения давления разность удельных объемов v″ и v′ уменьшается и при некотором давлении становится равной нулю. В этой точке, называемой критической, сходятся пограничные кривые ak и kc. Состояние, соответствующее точке k , называется критическим. Оно характеризуется тем, что при нем пар и вода имеют одинаковые удельные объемы и не отличаются по свойствам друг от друга. Область, лежащая в криволинейном треугольнике bkc p, v -диаграмме), соответствует влажному насыщенному пару.

Состояние перегретого пара изображается точками, лежащими над верхней пограничной кривой kc .

На T, s -диаграмме площадь 0abs′ соответствует количеству теплоты, необходимого для нагрева жидкой воды до температуры насыщения.

Количество подведенной теплоты, Дж/кг, равное теплоте парообразования r, выражается площадью s′bcs, и для нее имеет место соотношение:

r = T (s″ — s′ ).

Количество подведенной теплоты в процессе перегрева водяного пара изображается площадью s″cds .

На T, s -диаграмме видно, что по мере увеличения давления теплота парообразования уменьшается и в критической точке становиться равной нулю.

Обычно T, s -диаграмма применяется при теоретических исследованиях, так как практическое использование ее сильно затрудняется тем, что количества теплоты выражаются площадями криволинейных фигур.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. — М. :КНОРУС, 2011. — 352 с.

При слове "пар", я вспоминаю времена, когда ещё учился в начальных классах. Тогда, приходя из школы домой, родители начинали готовить обед, и ставили кастрюлю с водой на газовую плиту. И уже через десять минут, в кастрюльке начинали появляться первые пузырьки. Этот процесс всегда меня завораживал, мне казалось, что я могу смотреть на это вечно. А потом, через некоторое время после появления пузырьков, начинал идти сам пар. Однажды, я спросил маму: "А откуда идут эти белые тучки?" (Так раньше я их называл). На что она мне отвечала: "Это всё происходит из-за нагрева воды". Хотя ответ и не давал полного представления о процессе возникновения пара, на уроках школьной физики я узнал о паре всё, что хотел. Итак...

Что же есть водяной пар

С научной точки зрения, водяной пар - просто одно из трёх физических состояний самой воды . Он, как известно, возникает при нагревании воды. Как и она сама, пар не имеет ни цвета, ни вкуса, ни запаха. Но не все знают, что клубы пара обладают своим давлением, которое зависит от его объёма. А выражается оно в паскалях (в честь небезызвестного учёного).

Водяной пар окружает нас не только, когда мы варим что-нибудь на кухне. Он постоянно содержится в уличном воздухе и атмосфере. И его процент содержания называется "абсолютной влажностью".


Факты о водяном паре и его особенности

Итак, несколько интересных моментов:

  • чем выше температура , которая действует на воду, тем быстрее идёт процесс испарения;
  • помимо этого, скорость испарения увеличивается с размерами площади поверхности, на которой эта вода находится. Другими словами, если мы начнём нагревать небольшой водный слой на широкой металлической чашке, то испарение пройдет весьма быстро;
  • для жизни растений нужна не только жидкая вода, но и газообразная . Объяснить этот факт можно тем, что с листьев любого растения постоянно идут испарения, охлаждающие его. Попробуйте в знойный день потрогать лист дерева – и вы заметите, что он прохладный;
  • то же самое касается человека, с нами работает та же система, что и с растениями выше. Испарения охлаждают нашу кожу в жаркий день . Удивительно, но даже при небольших нагрузках, наш организм покидает около двух литров жидкости в час. Что уж тут говорить про усиленные нагрузки и знойные летние деньки?

Вот таким образом можно описать сущность пара и его роль в нашем мире. Надеюсь, вы открыли для себя много интересного!

ВОДЯНОЙ ПАР . Паром называется газообразное тело, получающееся из жидкости при соответствующих температуре и давлении. Все газы м. б. обращены в жидкое состояние, и поэтому трудно провести границу между газами и парами. В технике паром считают газообразное тело, состояние которого недалеко от обращения в жидкость. Т. к. в свойствах газов и паров имеются значительные различия, то это различие терминов вполне целесообразно. Водяные пары являются важнейшими из паров, применяемых в технике. Они употребляются, как рабочее тело, в паровых двигателях (паровых машинах и паровых турбинах) и для целей нагревания и отопления. Свойства пара чрезвычайно различны, смотря по тому, находится ли пар в смеси с той жидкостью, из которой получается, или он отделен от нее. В первом случае пар называется насыщенным, во втором случае - перегретым . В технике первоначально применялся почти исключительно насыщенный пар, в настоящее время в паровых двигателях находит самое широкое применение перегретый пар, свойства которого поэтому тщательно изучаются.

I. Насыщенный пар . Процесс испарения лучше уясняется графическими изображениями, например, диаграммой в координатах р, v (удельное давление в кг/см 2 и удельный объем в м 3 /кг). На фиг. 1 изображен схематически процесс испарения для 1 кг воды. Точка а 2 изображает состояние 1 кг воды при 0° и давлении р 2 , причем абсцисса этой точки изображает объем этого количества, ордината - давление, под которым находится вода.

Кривая а 2 аа 1 показывает изменение объема 1 кг воды при повышении давления. Давления в точках а 2 , а, а 1 соответственно равны р 2 , р, р 1 кг 1см 2 . Фактически это изменение чрезвычайно мало, и в технических вопросах можно считать удельный объем воды не зависящим от давления (т. е. линию а 2 аа 1 можно принимать за прямую, параллельную оси ординат). Если нагревать взятое количество воды, сохраняя давление постоянным, то температура воды повышается, и при некоторой величине ее начинается испарение воды. При нагревании воды удельный объем ее, теоретически говоря, несколько увеличивается (по крайней мере, начиная с 4°, т. е. от температуры наибольшей плотности воды). Поэтому точки начала испарения при разных давлениях (р 2 , р, р 1) будут лежать на некоторой другой кривой b 2 bb 1 . Фактически это увеличение объема воды при повышении температуры незначительно, и потому при невысоких давлениях и температурах можно принимать удельный объем воды за постоянную величину. Удельные объемы воды в точках b 2 , b, b 1 обозначаются соответственно через v" 2 , v", v" 1 ; кривая b 2 bb 1 называется нижней предельной кривой. Температура, при которой начинается испарение, определяется тем давлением, под которым находится нагреваемая вода. За все время испарения эта температура не изменяется, если давление остается постоянным. Отсюда следует, что температура насыщенного пара есть функция только давления р. Рассматривая какую-либо линию, изображающую процесс испарения, например bcd, видим, что объем смеси пара и жидкости в процессе испарения возрастает по мере увеличения количества испарившейся воды. В некоторой точке d вся вода исчезает, и получается чистый пар; точки d для разных давлений образуют некоторую кривую d 1 dd 2 , которая называется верхней предельной кривой , или кривой сухого насыщенного пара ; пар в этом состоянии (когда только что закончилось испарение воды) называется сухим насыщенным паром . Если продолжать нагревание после точки d (по направлению к некоторой точке е), оставляя давление постоянным, то температура пара начинает повышаться. В этом состоянии пар называется перегретым. Таким образом получаются три области: правее линии d 1 dd 2 - область перегретого пара, между линиями b 1 bb 2 и d 1 dd 2 - область насыщенного пара и левее линии b 1 bb 2 - область воды в жидком состоянии. В какой-либо промежуточной точке с имеется смесь пара и воды.

Для характеристики состояния этой смеси служит количество х содержащегося в ней пара; при весе смеси в 1 кг (равном весу взятой воды) эта величина х называется пропорцией пара в смеси , или паросодержанием смеси ; количество воды в смеси будет равно (1-x) кг. Если v" м 3 /кг - удельный объем сухого насыщенного пара при температуре t и давлении р кг/см 2 , а объем воды при тех же условиях v", то объем смеси v найдется по формуле:

Объемы v" и v", а следовательно, и их разность v"-v" суть функции давления р (или температуры t). Вид функции, определяющей зависимость р от t для водяного пара, очень сложен; существует много эмпирических выражений для этой зависимости, которые все, однако, годятся лишь для некоторых ограниченных интервалов независимой переменной t. Реньо для температур от 20 до 230° дает формулу:

В настоящее время часто пользуются формулой Дюпре-Герца (Dupre-Hertz):

где k, m и n - постоянные.

Шюле дает эту формулу в следующем виде:

причем для температуры:

а) между 20 и 100°

(р - в кг/см 2 , Т - абсолютная температура пара);

б) между 100 и 200°

в) между 200 и 350°

Характер кривой давления р пара как функции температуры виден на фиг. 2.

В практике пользуются непосредственно таблицами, дающими связь между р и t. Таблицы эти составляются на основании точных опытов. Для нахождения удельных объемов сухого насыщенного пара имеется теоретически выводимая формула Клапейрон-Клаузиуса. Можно пользоваться также эмпирической формулой Молье:

Количество тепла q, необходимое для нагревания 1 кг воды от 0 до t° (начала испарения), выражается так:

где с - теплоемкость воды, в широких пределах мало отличающаяся от единицы; поэтому пользуются приближенной формулой:

Однако уже Реньо убедился в заметном возрастании с при высоких температурах и дал для q выражение:

В новейшее время для с даются такие данные (формула Дитеричи):

Для средней теплоемкости с m в интервале от 0 до t° дано выражение:

Несколько отклоняются от этой формулы данные опытов германского физико-технического института, наблюдения которого дают следующие значения с:

Для обращения в пар воды, нагретой до температуры, нужно еще затратить некоторое количество тепла r, которое называется скрытой теплотой испарения .

В настоящее время эту затрату теплоты разделяют на 2 части: 1) теплоту Ψ, идущую на внешнюю работу увеличения объема при переходе воды в пар (внешнюю скрытую теплоту испарения), и 2) теплоту ϱ, идущую на внутреннюю работу разъединения молекул, происходящую при испарении воды (внутреннюю скрытую теплоту испарения). Внешняя скрытая теплота испарения

где А = 1/427 - тепловой эквивалент механической работы.

Таким образом

Для r дается следующая формула (основанная на опытах германского физико-технического института):

Полная теплота испарения λ, т. е. количество тепла, необходимое для обращения воды, взятой при 0°, в пар при температуре t, равна, очевидно, q+r. Реньо дал для λ следующую формулу:

эта формула дает результаты, близкие к новейшим опытным данным. Шюле дает:

Внутренняя энергия u воды при 0° принимается равной нулю. Для нахождения приращения ее при нагревании воды нужно выяснить характер изменения удельного объема воды при изменении давления и температуры, т. е. вид кривых а 2 аа 1 и b 2 bb 1 (фиг. 1). Простейшим предположением будет принятие этих линий за прямые, и притом совпадающие друг с другом, т. е. принятие удельного объема воды v" за постоянную величину, не зависящую ни от давления, ни от температуры (v" = 0,001 м 3 /кг). При этом предположении вся теплота, идущая на нагревание жидкости, т. е. q, идет на повышение внутренней энергии (так как внешней работы при этом нагревании не совершается). Это предположение годится, однако, только для сравнительно невысоких давлений (таблицы Цейнера даны до давлений в 20 кг/см 2). Современные таблицы (Молье и др.), доходящие до критического давления (225 кг/см 2) и температуры (374°) не могут, конечно, игнорировать изменения объема воды (удельный объем воды при критическом давлении и критической температуре равен 0,0031 м 2 /кг, т. е. в три с лишним раза больше, чем при 0°). Но Стодола и Кноблаух показали, что приведенная у нас выше формула Дитеричи для величины q дает именно величины изменения внутренней энергии (а не величины q); впрочем, разница между этими величинами до давления в 80 кг/см 2 незначительна. Поэтому полагаем для воды внутреннюю энергию равной теплоте жидкости: u" = q. За период испарения внутренняя энергия повышается на величину внутренней скрытой теплоты испарения ϱ, т. е. энергия сухого насыщенного пара будет: (фиг. 3).

Для смеси с пропорцией пара х получим следующее выражение:

Зависимость теплоты испарения и давления от температуры графически дана на фиг. 3.

Молье ввел в техническую термодинамику термодинамическую функцию i, определяемую уравнением и называемую теплосодержанием . Для смеси с пропорцией пара х это даст:

или, после приведения:

для воды (x = 0) получается:

для сухого насыщенного пара:

Величина произведения APv" очень мала по сравнению даже с величиной q (и тем более по сравнению с величиною q + r = λ); поэтому можно принять

В таблицах Молье даются поэтому не величины q и λ, а величины i" и i" в функции р или t°. Энтропия насыщенного пара находится по своему дифференциалу выражение dQ для всех тел имеет вид:

Для насыщенного водяного пара

Первый член представляет собой приращение энтропии воды при ее нагревании, второй член - приращение энтропии смеси во время испарения. Полагая

получим или, интегрируя:

Заметим, что при вычислении s" изменением удельного объема v" обыкновенно тоже пренебрегают и полагают Для решения всех вопросов, касающихся насыщенных паров, пользуются таблицами. В прежнее время в технике находили применение таблицы Цейнера, в настоящее время они являются устарелыми; можно пользоваться таблицами Шюле, Кноблауха или Молье.

Во всех этих таблицах давления и температуры доведены до критического состояния. В таблицы включены следующие данные: температура и давление насыщенного пара, удельный объем воды и пара и удельный вес пара, энтропия жидкости и пара, теплосодержание воды и пара, полная скрытая теплота испарения, внутренняя энергия, внутренняя и внешняя скрытая теплота. Для некоторых вопросов (касающихся, например, конденсаторов) составляются специальные таблицы с малыми интервалами давлений или температуры.

Из всех изменений пара особенный интерес представляет адиабатическое изменение; оно м. б. изучено по точкам. Пусть дана (фиг. 4) начальная точка 1 адиабаты, определяемая давлением р 1 и пропорцией пара x 1 ; требуется определить состояние пара в точке 2, лежащей на адиабате, проходящей через точку 1 и определяемой давлением р 2 . Для нахождения х 2 выражают условие равенства энтропий в точках 1 и 2:

В этом уравнении величины s" 1 , r 1 /T 1 , s" 2 и r 2 /T 2 находятся по данным давлениям р 1 и р 2 , пропорция пара х 1 задана, и неизвестен только х 2 . Удельный объем v -2 в точке 2 определится по формуле:

Величины v"" 2 и v" 2 находятся из таблиц. Внешняя работа рассматриваемого адиабатического изменения находится по разности внутренних энергий вначале и конце изменения:

Для упрощения вычислений часто пользуются при изучении адиабатического изменения эмпирическим уравнением Цейнера, который выражает адиабату как политропу:

Показатель степени μ выражается через начальную пропорцию пара х 1 так:

Формула эта применима в пределах от x 1 = 0,7 до x 1 = 1. Адиабатическое расширение при начальной высокой пропорции пара, выше 0,5, сопровождается обращением части пара в воду (уменьшением x); при начальных пропорциях пара, меньших 0,5, адиабатическое расширение сопровождается, наоборот, испарением части воды. Формулы для остальных случаев изменения насыщенного пара находятся во всех учебниках технической термодинамики.

II. Перегретый пар . Внимание к перегретому пару привлечено было еще в 60-х годах прошлого столетия в результате опытов Гирна, показавших значительную выгоду при применении перегретого пара в паровых машинах. Но особенного распространения перегретый пар достиг после создания В. Шмитом особых конструкций перегревателей специально для получения пара высокого перегрева (300-350°). Эти перегреватели нашли широкое приложение сначала (1894-95 гг.) в стационарных паровых машинах, затем в паровозных машинах и в 20 веке - в паровых турбинах. В настоящее время почти ни одна установка не обходится без применения перегретого пара, причем перегрев доводится до 400-420°. Для возможности рационального применения столь высокого перегрева самые свойства перегретого пара были тщательно изучены. Первоначальная теория перегретого пара дана была Цейнером; она опиралась на немногочисленные опыты Реньо. Ее основные положения: 1) особый вид уравнения состояния, отличающегося от уравнения для идеальных газов добавочным членом, который является функцией только давления; 2) принятие для теплоемкости с р при постоянном давлении постоянного значения: с р = 0,48. Оба эти предположения не подтвердились в опытах над свойствами перегретого пара, произведенных в более широких пределах. Особое значение получили обширные опыты Мюнхенской лаборатории технической физики, начатые около 1900 г. и продолжающиеся и в настоящее время. Новая теория перегретого пара была дана в 1900-1903 гг. Каллендером в Англии и Молье в Германии, но и она не явилась окончательной, так как выражение для теплоемкости при постоянном давлении, получаемое из этой теории, не вполне согласуется с новейшими опытными данными. Поэтому появился целый ряд новых попыток построения уравнения состояния для перегретого пара, которое бы более согласовалось с результатами опытов.

Из этих попыток известность получило уравнение Эйхельберга. Окончательное завершение эти попытки нашли в новой теории Молье (1925-1927 гг.), поведшей к составлению его последних таблиц. Молье принимает очень выдержанную систему обозначений, которой мы отчасти пользовались выше. Обозначения Молье: Р - давление в кг/м 2 абс., р - давление в кг/см 2 абс., v - удельный объем в м 3 /кг, γ = 1/v удельный вес в кг/м 3 , t - температура от 0°, Т = t° + 273° - абсолютная температура, А = 1/427 - тепловой эквивалент механической работы, R = 47,1 - газовая постоянная (для паров воды), s - энтропия, i - теплосодержание в Cal/кг, u = i–APv - внутренняя энергия в Cal/кг, ϕ = s – i/T, с р - теплоемкость при постоянном давлении, c ii p = 0,47 – предельная величина c p при p = 0.

Значки " и " относятся собственно к воде и к сухому насыщенному пару. Из уравнения Молье

при помощи формул, вытекающих из I и II закона термодинамики, получаются все важнейшие величины, характеризующие перегретый пар, т. е, s, i, u и с р. Молье вводит следующие вспомогательные функции температуры:

При помощи этих функций получаются следующие выражения:

Формулы для нахождения удельного объема и прочих величин для перегретого пара довольно сложны и неудобны для вычислений. Поэтому новейшие таблицы Молье заключают в себе вычисленные значения важнейших величин, характеризующих перегретый пар в функции от давления и температуры. При помощи таблиц Молье довольно просто и с достаточной точностью решаются все задачи, касающиеся перегретого пара. Надо еще заметить, что для адиабатического изменения перегретого пара в известных пределах (до 20-25 кг/см 3) сохраняет свое значение уравнение политропического вида: pv 1,3 = Const. Наконец, многие вопросы, касающиеся перегретого пара, м. б. решены при помощи графических приемов, особенно при помощи диаграммы IS Молье. На этой диаграмме помещены кривые постоянных давлений, постоянных температур и постоянных объемов. Т. о. можно прямо из диаграммы получать значения v, s, i в функции давления и температуры. Адиабаты изображаются на этой диаграмме прямыми линиями, параллельными оси ординат. Особенно просто находятся разности величин теплосодержания, соответствующие началу и концу адиабатического расширения; эти разности необходимы для нахождения скоростей истечения пара.

Тема 2. Основы теплотехники.

Теплотехника - это наука, изучающая методы получения, преобразования, передачи и использования теплоты. Тепловая энергия получается при сжигании органических веществ, называемых топливом.

Основы теплотехники составляют:

1. Термодинамика - наука, изучающая превращение энергии тепла в другие виды энергии (например: тепловая энергия в механическую, хими­ческую и т. д.)

2. Теплопередача - изучает теплообмен между двумя теплоносите­лями через поверхность нагрева.

Рабочим телом является теплоноситель (водяной пар или горячая вода), который способен передавать теплоту.

В котельной теплоносителем (рабочим телом) является горячая вода и водяной пар с температурой 150°С или водяной пар с температурой до 250°С. Для отопления жилых и обще­ственных зданий используется горячая вода, это связано, с санитарно-гигиеническими условиями, возможностью легкого изменения ее темпера­туры в зависимости от температуры наружного воздуха. Вода обладает значительной плотностью по сравнению с паром, что позволяет передавать на большие расстояния значительное количество тепла при небольшом объеме теплоносителя. В систему отопления зданий вода подается с тем­пературой не выше 95°С во избежание пригорания пыли на приборах ото­пления иожогов от систем отопления. Пар используется для отопления промышленных зданий и в производственно-технологических системах.

Параметры рабочего тела

Теплоноситель, получая или отдавая тепловую энергию, изменяет свое состояние.

Например: Вода в паровом котле нагревается, превращается в пар, ко­торый имеет определенную температуру и давление. Пар поступает в па­роводяной подогреватель, сам охлаждается, превращается в конденсат. Температура нагреваемой воды увеличивается, температура пара и конден­сата понижается.

Основными параметрами рабочего тела являются температура, давление, удельный объем, плотность.

t, P- определяется приборами: манометрами, термометрами.

Удельный объем и плотность является расчетной величиной.

1. Удельный объем - объем занимаемый единицеймассы вещества при

0°С и атмосферном давлении 760 мм.рт.ст. (при нормальных условиях)

где: V- объем (м 3); m- масса вещества (кг); стандартное условие: Р=760мм р.ст. t=20 о С

2. Плотность - отношение массы вещества к его объему. каждое вещество имеет свою плотность:

В практике применяется относительная плотность – отношение плотности данного газа к плотности стандартного вещества (воздуха) при нормальных условиях (t° = 0°С: 760 мм. рт.ст.)

Сравнивая плотность воздуха с плотностью метана, мы можем определить из каких мест брать пробу на наличие метана.

получаем,

газ легче воздуха, значит, он заполняет верхнюю часть любого объема, проба берется из верхней части топки котла, колодца, камер, помещения. Газоанализаторы устанавливаются в верхней части помещений.

(мазут легче, занимает верхнюю часть)

Плотность угарного газа почти, такая как у воздуха, поэтому проба на угарный газ берется в 1.5 метров от пола.

3. Давление - эта сила, действующая на единицу площади поверхности.

Давление силы, равной 1Н, равномерно распределенное на поверх­ности 1м 2 принято за единицу давления и равно 1Па (Н/м 2) в системе СИ (сейчас в школах, в книгах все идет в Па, приборы тоже стали в Па).

Величина Па мала по значению, пример: если взять 1 кг воды разлить на 1 метр получаем 1 мм.в.ст. ,поэтому вводятся множители и приставки- МПа, КПа…

В технике применяются более крупные единицы измерения

1кПа=10 3 Па; 1МПа=10 б Па; 1ГПа=10 9 Па.

Вне системные единицы измерения давления кгс/м 2 ; кгс/см 2 ;мм.в.ст;мм.р.ст.

1 кгс/м 2 = 1 мм.в ст =9,8 Па

1 кгс/см 2 = 9,8 . 10 4 Па ~ 10 5 Па = 10 4 кгс/м 2

Давление не редко измеряют в физических и технических атмосферах.

Физическая атмосфера - среднее давление атмосферного воздуха на уровне моря при н.у.

1атм = 1,01325 . 10 5 Па = 760 мм рт.ст. = 10,33 м вод. ст = 1,0330 мм в. ст. = 1,033 кгс/ см 2 .

Техническая атмосфера- давление вызываемое силой в 1кгс равномерно распределенное по нормальной к ней поверхности площадью в 1см 2 .

1ат = 735 мм рт. ст. = 10 м. в. ст. = 10.000 мм в. ст. = =0,1 МПа= 1 кгс/см 2

1 мм в. ст. - сила, равная гидростатическому давлению водяного сто­лба высотой в 1 мм на плоское основание 1мм в. ст = 9,8 Па.

1 мм. рт. ст - сила, равная гидростатическому давлению столба ртути высотой 1 мм на плоское основание. 1 мм рт. ст. = 13,6 мм. в. ст.

В технических характеристиках насосов вместо давления употреб­ляется термин напор. Единицей измерения напора является м. вод. ст. Например: Напор создаваемый насосом равен 50 м вод. ст. это значит, он может поднять воду на высоту 50 м.

Виды давления : избыточное, вакуум (разрежение, тяга), абсолютное, атмосферное .

Если стрелка отклоняется в строну большую нуля то это избыточное давление, в меньшую – разряжение.

Абсолютное давление:

Р абс =Р изб +Р атм

Р абс =Р вак +Р атм

Р абс =Р атм -Р разр

где: Р атм =1 кгс/см 2

Атмосферное давление - среднее давление атмосферного воздуха на уровне моря при t° = 0°С и нормальном атмосферном Р =760 мм. рт. ст.

Избыточное давление - давление выше атмосферного (в замкнутом объеме). В котельных под избыточным давлением находятся вода, пар в котлах и трубопроводах. Р изб. измеряется приборами манометрами.

Вакуум (Разрежение) - давление в замкнутых объемах меньше атмосферного (вакуум). Топки и дымоходы котлов находятся под разрежением. Разрежение измеряется приборами тягомерами.

Абсолютное давление - избыточное давление или разрежение с уче­том атмосферного давления.

По назначению давление бывает:

1). Русловное - наибольшее давление при t=20 o С

2). Ррабочее – максимально избыточное давление в котле, при котором обеспечивается длительная работа котла при нормальных условиях эксплуатации (указывается в производственной инструкции).

3). Рразрешенное - максимально допустимое давление, установленное по результатам технического освидетельствования или контрольного расчета на прочность.

4). Ррасчетное – максимально избыточное давление, на котором производится расчет прочность элементов котла.

5). Рпробное - избыточное давление, при котором производят гидравлические испытания элементов котла на прочность и плотность (один из видов технического освидетельствования).

4. Температура - это степень нагретости тела, измеряется в градусах. Определяет направление самопроизвольной передачи тепла от более нагретого к менее нагретому те­лу.

Передача тепла будет иметь место до того момента пока температуры не станут равными, т. е. наступит температурное равновесие.

Используются две шкалы: международная - Кельвина и практическая Цельсия t °С.

За ноль в этой шкале принята температура плавления льда, за сто градусов – температура кипения воды при атм. давлении (760 мм рт. ст.).

За начало отсчета в термодинамической шкале температур Кельвина применят абсолютный нуль (низшая теоретически возможная температура, при которой отсутствует движение молекул). Обозначается Т.

1 Кельвин по величине равен 1° шкалы Цельсия

Температура таяния льда равна 273К. Температура кипения воды равна 373К

Т=t + 273; t = T-273

Температура кипения зависит от давления.

Например, При Р аб c = 1,7 кгс/см 2 . Вода кипит при t = 115°С.

5. Теплота - энергия, которая может передаваться от более нагретого те­ла к менее нагретому.

В системе СИ единицей измерения теплоты и энергии является Джоуль (Дж). Внесистемная единица измерения теплоты - калория (кал.).

1 кал. - количество теплоты необходимое для нагрева 1 г Н 2 О на 1°С при

Р = 760 мм. рт.ст.

1 кал. =4,19Дж

6.Теплоемкость способность тела поглощать теплоту. Для того чтобы два различных вещества с одинаковой массой нагреть до одинаковой температуры, нужно затратить различное количество теплоты.

Удель­ная теплоемкость воды – количество тепла которое необходимо сообщить единицей вещества чтобы повысить его t на 1°С, равна 1 ккал/кг град.

Способы передачи теплоты.

Различают, три способа переноса теплоты:

1.теплопроводность;

2.излучение (радиация);

3.конвекция.

Теплопроводность-

Перенос теплоты вследствие теплового движе­ния молекул, атомов и свободных электронов.

Каждое вещество имеет свою теплопроводность, она зависит от хими­ческого состава, структуры, влажности материала.

Количественной характеристикой теплопроводности является коэф­фициент теплопроводности этоколичество теплоты, передаваемые через единицу поверхности нагрева в единицу времени при разности t в о С и толщине стенки в 1 метр.

Коэффициент теплопроводности ( ):

Медь = 330 ккал . м/м 2. ч . град

Чугун = 5 4 ккал . м/м 2. ч . град

Сталь =39 ккал . м/м 2. ч . град

Видно что: хорошей теплопроводностью обладают металлы, лучше всего медь.

Асбест =0,15 ккал . м/м 2. ч . град

Сажа =0,05-0, ккал . м/м 2. ч . град

Накипь =0,07-2 ккал . м/м 2. ч . град

Воздух =0,02 ккал . м/м 2. ч . град

Слабо проводят теплоту пористые тела (асбест, сажа, накипь).

Сажа затрудняет передачу тепла от топочных газов к стенке котла (проводит тепло хуже стали в 100 раз), что приводит к перерасходу топлива, снижению выработки пара или горячей воды. При наличии сажи повышается температура уходящих газов. Все это ведет и уменьшению КПД котла. При работе котлов ежечасно по приборам (логометр) контролируется t ух.газов, значения которых указаны в режимной карте котла. Если t ух.газов повысилась то производится обдувка поверхности нагрева.

Накипь образуется внутри труб (в 30-50 раз хуже проводит тепло, чем сталь), тем самым уменьшает теплопередачу от стенки котла к воде, в резуль­тате стенки перегреваются, деформируются, разрываются (разрыв труб котла). На­кипь в 30-50 раз хуже проводит тепло, чем сталь

Конвекция -

Перенос теплоты перемешиванием или перемещением частиц между собой (характерна только для жидкостей и газов). Различают конвекцию естественную и принудительную.

Естественная конвекция - свободное движение жидкости или газов за счет разности плотностей неравномерно нагретых слоев.

Принудительная конвекция - вынужденное движение жидкости или газов за счет давления или разрежения, создаваемых насосами, дымосо­сами и вентиляторами.

Способы увеличения конвективного теплообмена:

§ Увеличение скорости потока;

§ Турбулизация (завихрение);

§ Увеличение поверхности нагрева (за счет установки ребер);

§ Увеличение разности температур между греющей и нагреваемой средами;

§ Противоточное движение сред (противоток) .

Излучение (радиация)-

Теплообмен между телами находящимися на расстоянии друг от друга за счет лучистой энергии, носителями которой являются электромагнитные колебания: происходит превращение тепловой энергии в лучистую и наоборот, из лучистой в тепловую.

Излучение наиболее эффективный способ передачи теплоты, особенно если изучающее тело имеет высокую температуру, а лучи на­правлены перпендикулярно к нагреваемой поверхности.

Для улучшения теплообмена излучением в топках котлов выкладываются из огнеупорных материалов специальные щели, которые одновременно являются излучателями теплоты и стабилизаторами горения.

Поверхность нагрева котла – поверхность, с которой с одной стороны омывается газами с другой стороны водой.

Рассмотренные выше 3 вида теплообмена в чистом виде встреча­ются редко. Практически один вид теплообмена сопровождается другим. В котле присутствуют все три вида теплообмена, который называется сложным теплообменом.

В топке котла:

А) от факела горелки к внешней поверхности труб котла- излучением.

Б) от образующихся дымовых газов к стенке –конвекцией

В) от внешней поверхности стенки трубы к внутренней- теплопроводностью.

Г) от внутренней поверхности стенки трубы к воде, циркуляцией вдоль поверхности – конвекцией.

Перенос теплоты от одной среды к другой через разделительную стенку называется теплопередачей.

Вода, водяной пар и его свойства

Вода простейшая устойчивая в обычных условиях химическое соединение водорода с кислородом, наибольшая плотность воды 1000кг/м 3 при t=4 о С.

Вода, как и всякая жидкость, подчиняется гидравлическим законам. Она почти не сжимается, поэтому обладает способностью передавать давление, оказываемое на нее во все стороны с одинаковой силы. Если несколько сосудов разной формы соединить между собой, то уровень воды будет одинаковый везде (закон сообщающихся сосудов).