Врожденный и приобретенный иммунитет. Врожденный иммунитет

Сегодня врачи, произнося слова «иммунная система» или «иммунитет», подразумевают совокупность механизмов и факторов, которые призваны обеспечивать сохранение внутренней среды организма человека от чужеродных агентов и болезнетворных микроорганизмов. Иммунная система находит патогенные и отмершие клетки, бактерии, токсины и удаляет их. Состоит она из двух подсистем: иммунитет врожденный и приобретенный.

Человек с рождения и до конца жизни находится в агрессивной инфекционной среде. Многие заболевания, которые встречаются в современном мире, связаны с проблемами природной защиты. Если процессы дают сбой, то защитные силы сводятся к минимуму, что в свою очередь делает организм человека уязвимым.

Описание врожденного иммунитета

Иммунная система человека – это довольно сложный, многоуровневый, самообучающийся и саморегулирующийся комплекс. Он постоянно обеспечивает нам биологическую индивидуальность, отторгая все генетически чуждое, в любой форме, концентрации и варианте агрессии.

Эволюционно врожденный иммунитет более древний и включает в себя физиологические факторы и механические барьеры. Это, прежде всего, кожа и разного рода секреты (слезы, слюна, моча и иные жидкие среды). Сюда относятся и чихание, температура тела, рвота, гормональный баланс, диарея. Иммунные клетки не умеют распознавать всевозможные чужеродные микроорганизмы и активно уничтожают их по правилу «свой-чужой». Однако они всегда очень быстро реагируют на проникновение вирусов, грибков, бактерий, различного рода отравляющих веществ и обычно первыми активно вступают с ними в бой.

Любая инфекция воспринимается организмом как одностороннее зло. Однако, как бы цинично это не звучало, она может принести ему даже пользу. Преднамеренное заражение или вакцинация является искусственно вызванной тревогой и призывает организм мобилизовать свои оборонные механизмы. Организм учится распознавать чужеродного агрессора и проходит своеобразную тренировку в умении уничтожать врага. Такое умение в создании защитных реакций остается в организме, и в дальнейшем способно отражать даже более опасные атаки вирусов и болезнетворных организмов.

Описание приобретенного иммунитета

Кроме врожденной защитной реакции организм человека может развивать довольно мощный иммунитет против особо опасных бактерий, токсинов, чужеродных тканей и вирусов. Такую способность принято называть адаптивным или приобретенным иммунитетом. Он создается специфической иммунной системой, формирующей антитела и/или лимфоциты, которые в свою очередь атакуют и разрушают патогенные микроорганизмы и токсины. Такие иммунные клетки способны распознавать и запоминать микробы и молекулы, которые уже попадали в организм. Но теперь ответная реакция будет дольше и гораздо быстрее.

Приобретенный иммунитет бывает активным (появляется обычно после перенесенной болезни или вакцинации) и пассивным (переданные антитела от матери к плоду с грудным молоком или посредством плаценты). Такого рода «память» может остаться на долгие годы. В нормальных условиях приобретенные защитные функции неактивны и начинают действовать, когда врожденные не справляются. Обычно это сопровождается упадком сил и повышением температуры, которая убивает болезнетворные вирусы, стимулирует защитные функции клеток иммунной системы и обменных процессов. А потому, не следует сбивать температуру, если она не превышает 38°С. В подобных случаях, врачи рекомендуют применять народные средства для согревания тела: горячее питье и ванны для ног. Когда враг будет побежден, то активность иммунитета снизится, чтобы не отнимать силы у организма.

Врожденный и приобретенный иммунитет тесно связаны между собой, но постоянно активен лишь первый.

МЕХАНИЗМЫ ВРОЖДЁННОГО ИММУНИТЕТА

Врождённый иммунитет - наиболее ранний защитный механизм как в эволюционном плане (он существует практически у всех многоклеточных), так и по времени ответа, развивающегося в первые часы и дни после проникновения чужеродного материала во внутреннюю среду, т.е. задолго до развития адаптивной иммунной реакции. Значительную часть патогенов инактивируют именно врождённые механизмы иммунитета, не доводя процесс до развития иммунного ответа с участием лимфоцитов. И только если механизмы врождённого иммунитета не справляются с проникающими в организм патогенами, в «игру» включаются лимфоциты. При этом адаптивный иммунный ответ невозможен без вовлечения механизмов врождённого иммунитета. Кроме того, врождённый иммунитет играет главную роль в удалении апоптотических и некротических клеток и реконструировании повреждённых органов. В механизмах врождённой защиты организма важнейшую роль играют первичные рецепторы для патогенов, система комплемента, фагоцитоз, эндогенные пептиды-антибиотики и факторы защиты от вирусов - интерфероны. Функции врождённого иммунитета схематично представлены на рис. 3-1.

РЕЦЕПТОРЫ РАСПОЗНАВАНИЯ «ЧУЖОГО»

На поверхности микроорганизмов присутствуют повторяющиеся молекулярные углеводные и липидные структуры, которые в подавляющем большинстве случаев отсутствуют на клетках организма хозяина. Особые рецепторы, распознающие этот «узор» на поверхности патогена, - PRR (Pattern Recognition Receptors –РRP-рецептор) - позволяют клеткам врождённого иммунитета обнаруживать микробные клетки. В зависимости от локализации выделяют растворимые и мембранные формы PRR.

Циркулирующие (растворимые) рецепторы для патогенов - белки сыворотки крови, синтезируемые печенью: липополисахаридсвязывающий белок (LBP - Lipopolysaccharide Binding Protein), компонент системы комплемента C1q и белки острой фазы MBL и С-реактивный белок (СРБ). Они непосредственно связывают микробные продукты в жидких средах организма и обеспечивают возможность их поглощения фагоцитами, т.е. являются опсонинами. Кроме того, некоторые из них активируют систему комплемента.

Рис. 3-1. Функции врождённого иммунитета. Обозначения: PAMP (PathogenAssociated Molecular Patterns) - молекулярные структуры микроорганизмов, HSP (Heat Shock Proteins) - белки теплового шока, TLR (Toll-Like Receptors), NLR (NOD-Like Receptors), RLR (RIG-Like Receptors) - клеточные рецепторы

- СРБ, связывая фосфорилхолин клеточных стенок ряда бактерий и одноклеточных грибов, опсонизирует их и активирует систему комплемента по классическому пути.

- MBL принадлежит к семейству коллектинов. Имея сродство к остаткам маннозы, экспонированным на поверхности многих микробных клеток, MBL запускает лектиновый путь активации комплемента.

- Белки сурфактанта лёгких - SP-A и SP-D принадлежат к тому же молекулярному семейству коллектинов, что и MBL. Они, вероятно, имеют значение в опсонизации (связывании антител с клеточной стенкой микроорганизма) лёгочного патогена - одноклеточного грибка Pneumocystis carinii.

Мембранные рецепторы. Эти рецепторы расположены как на наружных, так и на внутренних мембранных структурах клеток.

- TLR (Toll-Like Receptor - Toll-подобный рецептор; т.е. сходный с Toll-рецептором дрозофилы). Одни из них непосредственно связывают продукты патогенов (рецепторы для маннозы макрофагов, TLR дендритных и других клеток), другие работают совместно с иными рецепторами: например, CD14 молекула на макрофагах связывает комплексы бактериального липополисахарида (ЛПС) с LBP, а TLR-4 вступает во взаимодействие с CD14 и передаёт соответствующий сигнал внутрь клетки. Всего у млекопитающих описано 13 различных вариантов TLR (у человека пока только 10).

Цитоплазматические рецепторы:

- NOD-рецепторы (NOD1 и NOD2) находятся в цитозоле и состоят из трёх доменов: N-концевого CARD-домена, центрального NOD-домена (NOD - Nucleotide Oligomerization Domain - домен олигомеризации нуклеотидов) и C-концевого LRR-домена. Различие между этими рецепторами заключается в количестве CARD-доменов. Рецепторы NOD1 и NOD2 распознают мурамилпептиды - вещества, образующиеся после ферментативного гидролиза пептидогликана, входящего в состав клеточной стенки всех бактерий. NOD1 распознаёт мурамилпептиды с концевой мезодиаминопимелиновой кислотой (meso-DAP), которые образуются только из пептидогликана грамотрицательных бактерий. NOD2 распознаёт мурамилдипептиды (мурамилдипептид и гликозилированный мурамилдипептид) с концевым D-изоглутамином или D-глутаминовой кислотой, являющиеся результатом гидролиза пептидогликана как грамположительных, так и грамотрицательных бактерий. Кроме того, NOD2 имеет сродство к мурамилпептидам с концевым L-лизином, которые есть только у грамположительных бактерий.

- RIG- подобные рецепторы (RLR, RIG-Like Receptors): RIG-I (Retinoic acid-Inducible Gene I ), MDA5 (Melanoma Differentiation-associated Antigen 5) и LGP2 (Laboratory of Genetics and Physiology 2).

Все три рецептора, кодируемые этими генами, имеют сходную химическую структуру и локализуются в цитозоле. Рецепторы RIG-I и MDA5 распознают вирусную РНК. Роль белка LGP2 пока неясна; возможно, он выполняет роль хеликазы, связываясь с двуцепочечной вирусной РНК, модифицирует её, что облегчает последующее распознавание с помощью RIG-I. RIG-I распознаёт односпиральную РНК с 5-трифосфатом, а также относительно короткие (<2000 пар оснований) двуспиральные РНК. MDA5 различает длинные (>2000 пар оснований) двуспиральные РНК. Таких структур в цитоплазме эукариотической клетки нет. Вклад RIG-I и MDA5 в распознавание конкретных вирусов зависит от того, образуют ли данные микроорганизмы соответствующие формы РНК.

ПРОВЕДЕНИЕ СИГНАЛОВ С TOLL-ПОДОБНЫХ РЕЦЕПТОРОВ

Все TLR используют одинаковую принципиальную схему передачи активационного сигнала в ядро (рис. 3-2). После связывания с лигандом рецептор привлекает один или несколько адапторов (MyD88, TIRAP, TRAM, TRIF), которые обеспечивают передачу сигнала с рецептора на каскад серин-треониновых киназ. Последние вызывают активацию факторов транскрипции NF-kB (Nuclear Factor of к-chain B-lymphocytes), AP-1 (Activator Protein 1), IRF3, IRF5 и IRF7(Interferon Regulatory Factor), которые транслоцируются в ядро и индуцируют экспрессию геновмишеней.

Все адапторы содержат TIR-домен и связываются с TIR-доменами TOLL-подобных рецепторов (Toll/Interleukin-1 Receptor, так же как рецептора для ИЛ-1) путём гомофильного взаимодействия. Все известные TOLL-подобные рецепторы, за исключением TLR3, передают сигнал через адаптор MyD88 (MyD88-зависимый путь). Связывание MyD88 с TLR1/2/6 и TLR4 происходит при помощи дополнительного адаптора TIRAP, который не требуется в случае TLR5, TLR7 и TLR9. В передаче сигнала с TLR3 адаптор MyD88 не участвует; вместо него используется TRIF (MyD88-независимый путь). TLR4 использует как MyD88зависимый, так и MyD88-независимый пути передачи сигнала. Однако связывание TLR4 с TRIF происходит при помощи дополнительного адаптора TRAM.

Рис. 3-2. Пути передачи сигналов с Toll-подобных рецепторов (TLR). Указанные на рисунке TLR3, TLR7, TLR9 - внутриклеточные эндосомальные рецепторы; TLR4 и TLR5 - мономерные рецепторы, встроенные в цитоплазматическую мембрану. Трансмембранные димеры: TLR2 с TLR1 или TLR2 с TLR6. Тип распознаваемого димерами лиганда зависит от их состава

MyD88-зависимый путь. Адаптор MyD88 состоит из N-концевого DD-домена (Death Domain - домен смерти) и С-концевого TIRдомена, связанного с рецептором с помощью гомофильного TIR- TIR взаимодействия. MyD88 привлекает киназы IRAK-4 (Interleukin-1 Receptor-Associated Kinase-4) и IRAK-1 через взаимодействие с их аналогичными DD-доменами. Это сопровождается их последовательным фосфорилированием и активацией. После этого IRAK-4 и IRAK-1 отделяются от рецептора и связываются с адаптером TRAF6, который, в свою очередь, привлекает киназу TAK1 и убиквитин-лигазный комплекс (на рис. 3-2 не показан), что приводит к активации TAK1. TAK1 активирует две группы мишеней:

IκB-киназу (IKK), состоящую из субъединиц IKKα, IKKβ и IKKγ. В результате фактор транскрипции NF-kB освобождается от ингибирующего его белка IκB и транслоцируется в клеточное ядро;

Каскад митоген-активируемых протеинкиназ (MAP-киназ), способствующий активации факторов транскрипции группы AP-1. Состав AP-1 варьирует и зависит от типа активирующего сигнала. Основные его формы - гомодимеры c-Jun или гетеродимеры c-Jun и c-Fos.

Результатом активации обоих каскадов является индукция экспрессии антимикробных факторов и медиаторов воспаления, в том числе фактора некроза опухолей альфа ФНОа (TNFa), который, воздействуя на клетки аутокринно, вызывает экспрессию дополнительных генов. Кроме того, AP-1 инициирует транскрипцию генов, ответственных за пролиферацию, дифференцировку и регуляцию апоптоза.

MyD88-независимый путь. Передача сигнала происходит через адаптер TRIF или TRIF:TRAM и приводит к активации киназы TBK1, которая, в свою очередь, активирует фактор транскрипции IRF3. Последний индуцирует экспрессию интерферонов I типа, которые, как и ФНОа в MyDSS-зависимом пути, воздействуют на клетки аутокринно и активируют экспрессию дополнительных генов (interferon response genes). Активация различных сигнальных путей при стимуляции TLR, вероятно, обеспечивает направленность врождённой иммунной системы на борьбу с тем или иным типом инфекции.

Сравнительная характеристика врождённых и адаптивных механизмов резистентности приведена в табл. 3-1.

Существуют субпопуляции лимфоцитов со свойствами, «промежуточными» между таковыми неклонотипных механизмов врождённого иммунитета и клонотипных лимфоцитов с большим разнообразием рецепторов для антигенов. Они не пролиферируют после связывания антигена (т.е. экспансии клонов не происходит), но в них сразу индуцируется продукция эффекторных молекул. Ответ не слишком специфичен и наступает быстрее, чем «истинно лимфоцитарный», иммунная память не формируется. К таким лимфоцитам можно отнести:

Внутриэпителиальные γδT-лимфоциты с перестроенными генами, кодирующими TCR ограниченного разнообразия, связывают лиганды типа белков теплового шока, нетипичные нуклеотиды, фосфолипиды, MHC-IB;

B1-лимфоциты брюшной и плевральной полостей имеют перестроенные гены, кодирующие BCR ограниченного разнообразия, которые обладают широкой перекрёстной реактивностью с бактериальными антигенами.

ЕСТЕСТВЕННЫЕ КИЛЛЕРЫ

Особая субпопуляция лимфоцитов - естественные киллеры (NKклетки, натуральные киллеры). Они дифференцируются из общей лимфоидной клетки-предшественника и in vitro способны спонтанно, т.е. без предварительной иммунизации, убивать некоторые опухолевые, а также инфицированные вирусами клетки. NK-клетки являются большими гранулярными лимфоцитами, не экспрессирующими линейных маркёров Т- и В-клеток (CD3, CD19). В циркулирующей крови нормальные киллеры составляют около 15% всех мононуклеарных клеток, а в тканях локализованы в печени (большинство), красной пульпе селезёнки, слизистых оболочках (особенно репродуктивных органов).

Большинство NK-клеток содержит в цитоплазме азурофильные гранулы, где депонированы цитотоксические белки перфорин, гранзимы и гранулизин.

Главными функциями NK-клеток являются распознавание и элиминация клеток, инфицированных микроорганизмами, изменённых в результате злокачественного роста, либо опсонизированных IgGантителами, а также синтез цитокинов ИФНу, ФНОа, GM-CSF, ИЛ-8, ИЛ-5. In vitro при культивировании с ИЛ-2 NK-клетки приобретают высокий уровень цитолитической активности по отношению к широкому спектру мишеней, превращаясь в так называемые LAK-клетки.

Общая характеристика NK-клеток представлена на рис. 3-3. Главные маркёры NK-клеток - молекулы CD56 и CD16 (FcγRIII). CD16 является рецептором для Fc-фрагмента IgG. На NK-клетках имеются рецепторы для ИЛ-15 - ростового фактора NK-клеток, а также для ИЛ-21 - цитокина, усиливающего их активацию и цитолитическую активность. Важную роль играют молекулы адгезии, обеспечивающие контакт с другими клетками и межклеточным матриксом: VLA-5 способствует прилипанию к фибронектину; CD11a/CD18 и CD11b/CD18 обеспечивают присоединение к молекулам эндотелия ICAM-1 и ICAM-2 соответственно; VLA-4 - к молекуле эндотелия VCAM-I; CD31, молекула гомофильного взаимодействия, ответственна за диапедез (выхождение через сосудистую стенку в окружающую ткань) NK-клеток через эпителий; CD2, рецептор для эритроцитов барана, является молекулой адгезии, которая

Рис. 3-3. Общая характеристика NK-клеток. IL15R и IL21R - рецепторы для ИЛ-15 и ИЛ-21 соответственно

взаимодействует с LFA-3 (CD58) и инициирует взаимодействие NKклеток с другими лимфоцитами. Помимо CD2, на NK-клетках человека выявляются и некоторые другие маркёры Т-лимфоцитов, в частности CD7 и гомодимер CD8a, но не CD3 и TCR, что отличает их от NKTлимфоцитов.

По эффекторным функциям NK-клетки близки к T-лимфоцитам: они проявляют цитотоксическую активность в отношении клетокмишеней по тому же перфорин-гранзимовому механизму, что и ЦТЛ (см. рис. 1-4 и рис. 6-4), и продуцируют цитокины - ИФНγ, ФНО, GM-CSF, ИЛ-5, ИЛ-8.

Отличие естественных киллеров от T-лимфоцитов состоит в том, что у них отсутствует TCR и они распознают комплекс антиген-

MHC иным (не вполне ясным) способом. NK не формируют клетки иммунной памяти.

На NK-клетках человека есть рецепторы, относящиеся к семейству KIR (Killer-cell Immunoglobulin-like Receptors), способные связывать молекулы MHC-I собственных клеток. Однако эти рецепторы не активируют, а ингибируют киллерную функцию нормальных киллеров. Кроме того, на NK-клетках есть такие иммунорецепторы, как FcyR, и экспрессирована молекула CD8, имеющая сродство к

На уровне ДНК гены KIR не перестраиваются, но на уровне первичного транскрипта происходит альтернативный сплайсинг, что обеспечивает определённое разнообразие вариантов этих рецепторов у каждой отдельной NK-клетки. На каждом нормальном киллере экспрессировано более одного варианта KIR.

H.G. Ljunggren и K. Karre в 1990 г. сформулировали гипотезу «missing self» («отсутствие своего»), согласно которой NK-клетки распознают и убивают клетки своего организма с пониженной или нарушенной экспрессией молекул MHC-I. Поскольку субнормальная экспрессия MHC-I возникает в клетках при патологических процессах, например при вирусной инфекции, опухолевом перерождении, NK-клетки способны убивать инфицированные вирусами или перерождённые клетки собственного организма. Гипотеза «missing self» схематично представлена на рис. 3-4.

СИСТЕМА КОМПЛЕМЕНТА

Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента (табл. 3-2, 3-3) обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Рис. 3-4. Гипотеза «missing self» (отсутствие своего). На рисунке представлены три типа взаимодействия NK-клеток с мишенями. На NK-клетках имеется два типа распознающих рецепторов: активационные и ингибиторные. Ингибиторные рецепторы различают молекулы MHC-I и угнетают сигнал от активационных рецепторов, которые, в свою очередь, определяют либо молекулы MHC-I (но с меньшей аффинностью, чем ингибиторные рецепторы), либо MHC-подобные молекулы: а - клетка-мишень не экспрессирует активационных лигандов, и лизиса не происходит; б - клетка-мишень экспрессирует активационные лиганды, но не экспрессирует MHC-I. Такая клетка подвергается лизису; в - клеткамишень содержит как молекулы MHC-I, так и активационные лиганды. Исход взаимодействия зависит от баланса сигналов, идущих от активационных и ингибиторных рецепторов NK-клеток

Активация комплемента (рис. 3-5). В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Рис. 3-5. Активация системы комплемента и образование мембраноатакующего комплекса. Пояснения см. в тексте, а также в табл. 3-2, 3-3. Активированные компоненты, согласно международному соглашению, надчёркнуты

◊ Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.

ФАГОЦИТОЗ

Фагоцитоз - особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур.«Профессиональные» фагоциты у млекопитающих - два типа дифференцированных клеток - нейтрофилы и макрофаги, которые созревают в костном мозге из СКК и имеют общую промежуточную клетку-предшественник. Сам термин «фагоцитоз» принадлежит И.И. Мечникову, который описал клетки, участвующие в фагоцитозе (нейтрофилы и макрофаги), и основные стадии фагоцитарного процесса: хемотаксис, поглощение, переваривание.

Нейтрофилы составляют значительную часть лейкоцитов периферической крови - 60-70%, или 2,5-7,5х10 9 клеток в 1 л крови. Нейтрофилы формируются в костном мозге, являясь основным продуктом миелоидного кроветворения. Они покидают костный мозг на предпоследней стадии развития - палочкоядерной форме, или на последней - сегментоядерной. Зрелый нейтрофил циркулирует 8-10 ч и поступает в ткани. Общая продолжительность жизни нейтрофила -

2-3 сут. В норме нейтрофилы не выходят из сосудов в периферические ткани, но они первыми мигрируют (т.е. подвергаются экстравазации) в очаг воспаления за счёт быстрой экспрессии молекул адгезии - VLA-4 (лиганд на эндотелии - VCAM-1) и интегрина CD11b/CD18 (лиганд на эндотелии - ICAM-1). На их наружной мембране выявлены эксклюзивные маркёры - CD66а и CD66d (раково-эмбриональные антигены). На рисунке 3-6 представлено участие нейтрофилов в фагоцитозе (миграция, поглощение, дегрануляция, внутриклеточный киллинг, деградация, экзоцитоз и апоптоз) и основные процессы, происходящие в этих клетках при активации (хемокинами, цитокинами и микробными веществами, в частности РАМР) - дегрануляция, образование активных форм кислорода и синтез цитокинов и хемокинов. Апоптоз нейрофилов и их фагоцитоз макрофагами можно рассматривать как важную составную часть воспалительного процесса, так как своевременное их удаление препятствует деструктивному действию их ферментов и различных молекул на окружающие клетки и ткани.

Рис. 3-6. Основные процессы, происходящие в нейтрофилах (НФ) при их активации и фагоцитозе

Моноциты и макрофаги. Моноциты являются «промежуточной формой», в крови их 5-10% от общего числа лейкоцитов. Их назначение - стать оседлыми макрофагами в тканях (рис. 3-7). Макрофаги локализуются в определённых участках лимфоидной ткани: медуллярных тяжах лимфатических узлов, красной и белой пульпы селезёнки. Клетки, производные моноцитов, присутствуют практически во всех нелимфоидных органах: клетки Купфера в печени, микроглия нервной системы, альвеолярные макрофаги, клетки Лангерганса кожи, остеокласты, макрофаги слизистых оболочек и серозных полостей, интерстициальной ткани сердца, поджелудочной железы, мезангиальные клетки почек (на рисунке не показаны). Макрофаги способствуют поддержанию гомеостаза, очищая организм от стареющих и апоптотических клеток, восстанавливая ткани после инфекции и травмы. Макрофаги

Рис. 3-7. Гетерогенность клеток, происходящих от моноцитов. Тканевые макрофаги (МФ) и дендритные клетки (ДК) происходят от моноцитов (МН) периферической крови

слизистых оболочек играют ведущую роль в защите организма. Для реализации этой функции они имеют набор распознающих рецепторов, кислородозависимые и кислородонезависимые механизмы киллинга микроорганизмов. Существенную роль в защите организма от инфекции играют макрофаги альвеолярные и слизистой оболочки кишечника. Первые «работают» в относительно бедной опсонинами среде, поэтому они экспрессируют большое количество паттернраспознающих рецепторов, включая скавенджер-рецепторы, маннозные рецепторы, β-глюканспецифические рецепторы, дектин-1 и др. При микробной инфекции в очаг проникновения микробов дополнительно мигрирует большое число воспалительных моноцитов, способных дифференцироваться в различные клеточные линии в зависимости от цитокинового окружения.

Защитной реакцией или иммунитетом называется ответ организма на внешнюю опасность и раздражители. Множество факторов в теле человека способствуют его защите от различных болезнетворных организмов. Что такое врождённый иммунитет, как происходит защита организма и в чем заключается ее механизм?

Врожденный и приобретенный иммунитет

Само понятие иммунитета связано с эволюционно приобретенными способностями организма препятствовать попаданию в него чужеродных агентов. Механизм борьбы с ними разный, так как виды и формы иммунитета отличаются своим многообразием и характеристиками. По происхождению и формированию защитный механизм может быть:

  • врожденный (неспецифический, естественный, наследственный) – защитные факторы в теле человека, которые были сформированы эволюционно и помогают бороться с чужеродными агентами с самого начала жизни; также данный вид защиты обуславливает видовую невосприимчивость человека к заболеваниям, которые свойственны животным, растениям;
  • приобретенный – защитные факторы, которые формируются в процессе жизни, может быть естественным и искусственным. Естественная защита формируется после перенесенного воздействия, вследствие чего организм способен приобретать антитела к данному опасному агенту. Искусственная защита связана с введением в организм готовых антител (пассивная) или ослабленной формы вируса (активная).

Свойства врожденного иммунитета

Жизненно важным свойством врожденного иммунитета является постоянное наличие в организме естественных антител, которые обеспечивают первичную реакцию на вторжение патогенных организмов. Важное свойство естественной ответной реакции – система комплимента, которая представляет собой комплекс белков в крови, которые обеспечивают распознавание и первичную защиту от чужеродных агентов. Данная система выполняет следующие функции:

  • опсонизация – процесс присоединения элементов комплекса к поврежденной клетке;
  • хемотаксис – совокупность сигналов посредством химической реакции, которая привлекает другие иммунные агенты;
  • мембранотропный повреждающий комплекс – белки комплимента, которые разрушают защитную мембрану опсонизированных агентов.

Ключевое свойство естественной ответной реакции – первичная защита, вследствие которой организм может получить информацию о новых для него чужеродных клеток, вследствие чего создается уже приобретенный ответ, который при дальнейшем столкновении с аналогичными патогенами будет уже готов для полноценной борьбы, без привлечения других факторов защиты (воспаления, фагоцитоза и т.д.).

Формирование врожденного иммунитета

Неспецифическая защита есть у каждого человека, она закреплена генетически, способна передаваться по наследству от родителей. Видовой особенностью человека является то, что он не восприимчив к ряду болезней, характерных для других видов. Для формирования врожденного иммунитета важную роль играет внутриутробное развитие и грудное вскармливание после рождения. Мать передает своему ребенку важные антитела, которые закладывают основу его первых защитных сил. Нарушение формирования естественной защиты может привести к иммунодефицитному состоянию из-за:

  • воздействия излучения;
  • химических агентов;
  • болезнетворных организмов в период внутриутробного развития.

Факторы врожденного иммунитета

Что такое врождённый иммунитет и в чем состоит механизм его действия? Совокупность общих факторов врожденного иммунитета призваны создать определенную линию защиты организма от чужеродных агентов. Данная линия состоит из нескольких защитных барьеров, которые выстраивает организм на пути патогенных микроорганизмов:

  1. Эпителий кожи, слизистые оболочки – первичные барьеры, которые обладают колонизационной резистентностью. Вследствие проникновения патогена развивается воспалительная реакция.
  2. Лимфатические узлы – важная защитная система, которая борется с патогеном до внедрения его в систему кровообращения.
  3. Кровь – при попадании инфекции в кровь развивается системный воспалительный ответ, при котором задействуются специальные форменные элементы крови. Если микробы не погибают в крови – инфекция распространяется на внутренние органы.

Клетки врожденного иммунитета

В зависимости от механизмов защиты бывает гуморальный и клеточный ответ. Совокупность гуморальных и клеточных факторов создают единую систему защиты. Гуморальная защита – ответ организма в жидкостной среде, внеклеточном пространстве. Гуморальные факторы врожденного иммунитета подразделяются на:

  • специфические – иммуноглобулины, которые вырабатывают В-лимфоциты;
  • неспецифические – секреты желез, сыворотка крови, лизоцим, т.е. жидкости, обладающие антибактериальными свойствами. К гуморальным факторам относят систему комплимента.

Фагоцитоз – процесс поглощения инородных агентов, происходит посредством клеточной активности. Клетки, которые участвуют в ответе организма подразделяются на:

  • Т-лимфоциты – долгоживущие клетки, которые подразделяются на лимфоциты с разными функциями (натуральные киллеры, регуляторы и др.);
  • В-лимфоциты – продуцируют антитела;
  • нейтрофилы – содержат антибиотические белки, имеют рецепторы хемотаксиса, поэтому мигрируют к месту воспаления;
  • эозинофилы – участвуют в фагоцитозе, отвечают за обезвреживание гельминтов;
  • базофилы – отвечают за аллергическую реакцию в ответ на раздражители;
  • моноциты – специальные клетки, которые превращаются в разные виды макрофагов (костной ткани, легких, печени и т.д.), обладают множеством функций, в т.ч. фагоцитоз, активизация комплимента, регулирование процесса воспаления.

Стимуляторы клеток врожденного иммунитета

Последние исследования ВОЗ показывают, что почти у половины населения планеты важные иммунные клетки – натуральные киллеры, находятся в дефиците. Из-за этого люди чаще подвержены инфекционным, онкологическим заболеваниям. Однако есть специальные вещества, которые стимулируют активность киллеров, к ним относятся:

  • иммуномодуляторы;
  • адаптогены (общеукрепляющие вещества);
  • трансферфакторные белки (ТБ).

Наибольшей эффективностью обладают ТБ, стимуляторы клеток врожденного иммунитета данного вида были обнаружены в молозиве и яичном желтке. Данные стимуляторы широко используют в медицине, их научились выделять из естественных источников, поэтому трансферфакторные белки сейчас находятся в свободном доступе в виде медицинских препаратов. Их механизм действия направлен на восстановление повреждений в системе ДНК, налаживание иммунных процессов видовой особенности человека.

Видео: врожденный иммунитет

Каждый знает, что организм имеет свою защиту, своеобразную «службу безопасности» — иммунитет. Эта тема на сегодняшний день интересна многим. Действительно, иммунитет очень важен для человеческого организма — чем устойчивее и крепче иммунитет, тем лучше здоровье. Работа иммунной системы четко слажена, но с возрастом и под воздействием неблагоприятных факторов окружающей среды она ослабевает. Это приводит к развитию различных патологических процессов. Все механизмы и свойства иммунной системы изучает специальная наука – иммунология.

Иммунитет – слово из латинского языка, которое означает «освобождение». Медицина объясняет иммунитет как способность организма защищать себя от многих чужеродных агентов – вирусов, бактерий, гельминтов, различных токсинов, атипичных (например, раковых) клеток и т.д.

Защитную функцию выполняют специальные антитела, иммуноглобулины. Если антител хватает, если они «сильные», то у болезни нет шансов развиться.

Иммунная система – это сложная защитная структура. Общеизвестно, что в борьбе чужеродными агентами принимают участие многие органы. Но основных всего два – красный костный мозг, в котором рождаются лимфоциты, и вилочковая железа (тимус), находящаяся в верхней части грудины. Иммунные клетки появляются в лимфоузлах, а созревают полностью в селезенке. В ней же уничтожаются старые лимфоциты, которые уже сделали свое дело. Внешняя защита организма – это, прежде всего, кожа, на которой погибают различные болезнетворные бактерии под воздействием специальных веществ, содержащихся в кожном сале. Другим барьером являются слизистые оболочки, пропитанные лимфоидной тканью и вырабатывающие специальные жидкости (слезы, слюна), которые тоже уничтожают инфекционных агентов. Уничтожают бактерии также сальные и потовые железы, ворсинки дыхательных путей, ресницы и др. По крови и лимфе все время передвигаются фагоциты (лейкоциты), которые поглощают болезнетворную микрофлору. Если лейкоцитов в крови много, то это сигнал того, что развивается заболевание. Когда у человека хорошее кровообращение, хороший состав крови, то это говорит о том, что иммунитет в порядке. Иммунитет подразделяют на врожденный и приобретенный.

Что такое врожденный иммунитет

Уже из названия понятно, что врожденный иммунитет (его называют еще неспецифическим) есть у человека с самого рождения. Врожденный иммунитет – это иммунитет к заболеваниям, которые характерны только для одного вида организмов. Например, человек имеет врожденный иммунитет к собачьей чуме и никогда ею не заболеет. А собака никогда не заболеет корью или холерой, потому что у нее есть врожденный иммунитет к этим заболеваниям. Исходя из этого, врожденный иммунитет можно назвать видовой иммунитет, поскольку он характерен для конкретного вида живых организмов.

Врожденный иммунитет есть у каждого человека, он передается от родителей, т.е. закреплен генетически. Поэтому его часто называют еще и наследственным иммунитетом. Антитела, которые составляют основу начальных защитных сил человека, когда он рождается, передаются от матери. Вот почему очень важное значение играют правильное внутриутробное развитие и естественное (грудное) вскармливание ребенка – только в этом случае формируется хороший врожденный иммунитет. Кровоток ребенка, находящегося в утробе матери, тесно связан с ее кровеносной системой за счет плацентарного барьера. За счет этого барьера ребенок с кровью получает от матери кислород, белки, жиры, углеводы, витамины, гормоны и др. необходимые вещества, в том числе факторы иммунной системы. Они защищают ребенка. Поэтому, когда ребенок рождается, он уже имеет некоторый иммунитет. Как только малыш начинает питаться материнским молоком (причем молоком именно биологической матери), поступление этих веществ в организм продолжается. В желудке они не разрушаются, потому что желудочный сок младенца низкой кислотности. Далее эти вещества иммунной системы поступают в кишечник, из которого всасываются в кровь, а затем разносятся кровью по всему организму. Именно этот механизм и обеспечивает врожденный иммунитет.

Отмечено, что дети, которые первые 6 месяцев питаются материнским молоком, практически не болеют в первый год жизни. Те же дети, которые вынуждены были находиться на искусственном вскармливании с первых дней жизни, болеют часто как в первый год жизни, так и в последующем. Если формирование естественной защиты нарушено, то это может привести к иммунодефицитному состоянию.

Факторы врожденного иммунитета

Механизм действия врожденного иммунитета – это совокупность определенных факторов, которые создают линию защиты человеческого организма от чужеродных агентов. Она состоит из нескольких защитных барьеров:

  1. Первичные барьеры – кожа и слизистые оболочки – при проникновении чужеродного агента развивается воспалительный процесс.
  2. Лимфатические узлы – эта защита борется с инфекционным агентом до попадания его в кровь. Если она ослаблена, то инфекция попадает в кровь.
  3. Кровь – когда инфекция попадает в кровь, то в работу включаются специальные элементы крови. В том случае, если они не в силах сдержать инфекцию, то она попадает во внутренние органы.

Кроме того, врожденный иммунитет имеет еще гуморальные и клеточные факторы. Гуморальные факторы делят на специфические и неспецифические. К специфическим относят иммуноглобулины, а к неспецифическим – жидкости, которые способны уничтожать бактерий (сыворотка крови, лизоцим, секреты разных желез). К клеточным факторам относят те клетки организма, которые принимают участие в защите от чужеродных агентов – Т- и В-лимфоциты, базофилы, нейтрофилы, эозинофилы, моноциты.

Итак, врожденный иммунитет имеет некоторые характерные особенности:

  • не меняется в течение жизни, определен генетически;
  • передается по наследству от поколения к поколению;
  • является видовым, т.е. как сформирован, так и закреплен для каждого отдельного вида в процессе эволюции;
  • распознаются строго определенные антигены;
  • устойчивость к определенным антигенам носит определенный характер;
  • врожденный иммунитет всегда включается в тот момент, когда внедряется антиген;
  • антиген самостоятельно удаляется из организма;
  • не формируется иммунная память.

Приобретенный иммунитет

Кроме врожденного, у человека есть еще и так называемый приобретенный иммунитет.

Он формируется в течение всей жизни и, в отличие от врожденного иммунитета, не передается по наследству. Приобретенный иммунитет начинает формироваться во время первой встречи с антигеном, запуская иммунные механизмы, которые запоминают этот антиген и вырабатывают специфические антитела к этому антигену. Благодаря этому, когда организм встречается в следующий раз с этим же антигеном, иммунный ответ возникает намного быстрее и становится более эффективным. В этом случае не происходит повторного заболевания. Например, если человек переболел один раз корью, ветрянкой или свинкой, то второй раз он уже не заболеет. В отличие от врожденного, приобретенный иммунитет:

  • не передается по наследству;
  • формируется в течение всей жизни, при этом изменяет набор генов;
  • индивидуален для каждого человека;
  • распознает любые антигены;
  • устойчивость к определенным антигенам строго индивидуальна;
  • когда происходит первый контакт, то иммунитет включается, в среднем, с 5-го дня;
  • чтобы удалить антиген, требуется помощь врожденного иммунитета;
  • формирует иммунную память.

Приобретенный иммунитет может быть как активным, так и пассивным.

Активный — формируется тогда, когда человек перенес какое-либо заболевание или ему была введена специфическая вакцина с ослабленными микроорганизмами или их антигенами. В результате может развиться пожизненная, длительная или кратковременная невосприимчивость. Это зависит от свойств возбудителя. Например, от кори – пожизненная, от брюшного типа – длительная, а от гриппа – кратковременная невосприимчивость. Активный приобретенный иммунитет не может реализоваться в случае иммунодефицита. Чтобы активный приобретенный иммунитет работал, иммунная система должна быть здоровой. Именно этот вид иммунитета формирует иммунную память.

Пассивный – формируется тогда, когда в организм вводят готовые антитела (например, от переболевшего человека) или антитела передаются новорожденному с молозивом матери. Приобретенный пассивный иммунитет развивается мгновенно и формируется в условиях иммунодефицита. Однако по сравнению с активным, приобретенный пассивный иммунитет имеет более низкую эффективность, не формирует иммунную память и имеет более низкую эффективность.

Врожденный и приобретенный иммунитет – это единая система защита, о которой надо постоянно заботиться и которую нужно постоянно укреплять. Потому что хороший иммунитет – это залог крепкого здоровья. Подходить к укреплению иммунной системы необходимо комплексно. Человеку жизненно необходим крепкий и здоровый иммунитет, который избавит организм от проникших чужеродных агентов и не позволит развиться различным заболеваниям.

Иммунитет – это невосприимчивость к генетически чужеродным агентам (антигенам), к которым относятся клетки и вещества различного происхождения, как поступающих извне, так и образующихся внутри организма.

К антигенам относятся в том числе и микробы – возбудители инфекционных заболеваний. Поэтому иммунитет можно рассматривать как невосприимчивость к инфекционным заболеваниям (к иммунитету также относится невосприимчивость, например, к пересаженным органам и тканям).

Наследственный (видовой), врожденный иммунитет – это иммунитет, который передается по наследству, в результате чего определенный вид (животные или человек) невосприимчив к микробам, вызывающим заболевание у другого вида. Этот иммунитет неспецифичен (не направлен на определенный вид микроба) и может быть абсолютным или относительным. Абсолютный не изменяется и не утрачивается, а относительный утрачивается при воздействии неблагоприятных факторов.

Приобретенный иммунитет не передается по наследству, а приобретается каждым организмом в течение жизни. Например, после перенесения заболевания (корь) человек становится устойчивым к этому заболеванию (приобретает иммунитет к кори). Другими болезнями человек может заболеть, т.е. приобретенный иммунитет является специфическим (направлен на определенный вид микроба).

Приобретенный иммунитет может быть активным и пассивным.

Активный иммунитет вырабатывается при действии антигена на организм. В результате организм становится способным самостоятельно вырабатывать специфические антитела или клетки против этого антигена. Антитела могут долго сохраняться в организме, иногда всю жизнь (например, после кори).

Активный иммунитет может быть естественным и искусственным.

Естественный активный иммунитет вырабатывается после перенесения инфекционного заболевания. (постинфекционным).

Искусственный активный иммунитет вырабатывается в ответ на искусственное введение микробных антигенов (вакцин).(поствакцинальный)

Пассивный иммунитет возникает в организме при попадании в него уже готовых антител или лимфоцитов (они вырабатываются другим организмом). Такой иммунитет сохраняется недолго (15-20 дней), потому что "чужие" антитела разрушаются и выводятся из организма.

Пассивный иммунитет также может быть естественным и искусственным.

Естественный пассивный иммунитет возникает, когда антитела передаются от матери к плоду через плаценту(плацентарным).

Искусственный пассивный иммунитет возникает после введения лечебных сывороток (лекарственных препаратов, содержащих готовые антитела). Такой иммунитет еще называют постсывороточным.

Неспецифические факторы защиты организма. Клеточные и гуморальные иммунобиологические факторы и их характеристика. Функции фагоцитов и стадии фагоцитоза. Завершенный и незавершенный фагоцитоз.

Большое значение в защите организма от генетически чужеродных агентов имеют неспецифические механизмы защиты или неспецифические механизмы резистентности (устойчивости).

Их можно разделить на 3 группы факторов:

1)механические факторы (кожа, слизистые оболочки);

2) физико-химические факторы (ферменты желудочно-кишечного тракта, рН среды);

3) иммунобиологические факторы:

Клеточные (фагоцитоз при участии клеток – фагоцитов);

Гуморальные (защитные вещества крови: нормальные антитела, комплемент, интерферон, b-лизины, фибронектин, пропердин и др.).

Кожа и слизистые оболочки – это механические барьеры, которые не могут преодолеть микробы. Это объясняется слущиванием эпидермиса кожи, кислой реакцией пота, образованием слизистыми оболочками кишечника, дыхательных и мочеполовых путей лизоцима – фермента, который разрушает клеточную стенку бактерий и вызывает их гибель.

Фагоцито з – это поглощение и переваривание антигенных веществ, в том числе микробов специальными клетками крови (лейкоцитами) и некоторых тканей, которые называются фагоцитами. К фагоцитам относятся микрофаги (нейтрофилы, базофилы, эозинофилы) и макрофаги (моноциты крови и тканевые макрофаги). Впервые фагоцитоз описал русский ученый И.И. Мечников.

Фагоцитоз может быть завершенным и незавершенным. Завершенный фагоцитоз заканчивается полным перевариванием микроба. При незавершенном фагоцитозе микробы поглощаются фагоцитами, но не перевариваются и могут даже размножаться внутри фагоцита.

В процессе фагоцитоза условно выделяют несколько основных стадий:
1 - Сближение фагоцита с объектом фагоцитоза.
2 - Распознавание фагоцитом объекта поглощения и адгезия к нему.
3 - Поглощение объекта фагоцитом с образованием фаголизосомы.
4 - Разрушение объекта фагоцитоза.

Нормальные антитела – это антитела, которые постоянно имеются в крови, а не вырабатываются в ответ на внедрение антигена. Они могут реагировать с разными микробами. Такие антитела присутствуют в крови людей, не болевших и не подвергавшихся иммунизации.

Комплемент- это система белков крови, которые способны связываться с комплексом антиген-антитело и разрушать антиген (микробную клетку). Разрушение микробной клетки – лизис. Если в организме отсутствуют микробы-антигены, то комплемент находится в неактивном (разрозненном) состоянии.

Интерфероны – это белки крови, которые обладают противовирусным, противоопухолевым и иммуномодулирующим действием. Их действие не связано с непосредственным влиянием на вирусы и клетки. Они действуют внутри клетки и через геном задерживают репродукцию вируса или пролиферацию клетки.

Арреактивность клеток организма также имеет большое значение в противовирусном иммунитете и объясняется отсутствием рецепторов на поверхности клеток у данного вида организма, с которыми могли бы связаться вирусы.

Естественные киллеры (NK-клетки) – это клетки-убийцы, которые разрушают ("убивают") опухолевые клетки и клетки, зараженные вирусами. Это особая популяция лимфоцитоподобных клеток – большие гранулосодержащие лимфоциты.

Факторы неспецифической защиты – более древние факторы защиты, которые передаются по наследству.

Выделяют также такие виды иммунитета, как

Гуморальный – объясняется наличием защитных веществ (в том числе, антител) в крови, лимфе и других жидкостях организма ("гуморос" – жидкость);

Клеточный - объясняется "работой" специальных клеток (иммунокомпетентных клеток);

Клеточно-гуморальный – объясняется и действием антител и "работой" клеток;

Антимикробный – направлен против микробов;

Антитоксический – против микробных ядов (токсинов);

Антимикробный иммунитет может быть стерильным и нестерильным.


Похожая информация.