Векторные диаграммы представления гармонических колебаний. a) А - максимальное значение колеблющейся величины, называемое амплитудой колебания



Вынужденные колебания. Резонанс.

До сих пор мы рассматривали собственные колебания, колебания, происходящие в отсутствие внешних воздействий. Внешнее воздействие было нужно лишь для того, чтобы вывести систему из состояния равновесия, после чего она предоставлялась самой себе. Дифференциальное уравнение собственных колебаний вообще не содержит следов внешнего воздействия на систему: это воздействие отражается лишь в начальных условиях.



Установление колебаний.

Но очень часто приходится сталкиваться с колебаниями, которые происходят при постоянно присутствующем внешнем воздействии. Особенно важен и в то же время достаточно прост для изучения случай, когда внешняя сила имеет периодический характер. Общей чертой вынужденных колебаний, происходящих под действием периодической внешней силы, является то, что спустя некоторое время после начала действия внешней силы система полностью «забывает» свое начальное состояние, колебания приобретают стационарный характер и не зависят от начальных условий. Начальные условия проявляются только в период установления колебаний, который обычно называют переходным процессом.


Синусоидальное воздействие.

Рассмотрим вначале наиболее простой случай вынужденных колебаний осциллятора под действием внешней силы, изменяющейся по синусоидальному закону.

Такое внешнее воздействие на систему можно осуществить различными способами. Например, можно взять маятник в виде шарика на длинном стержне и длинную пружину с малой жесткостью и прикрепить ее к стержню маятника недалеко от точки подвеса, как показано на рис. 178. Другой конец горизонтально расположенной пружины следует заставить двигаться по закону В с помошью кривошипно-шатунного механизма, приводимого в движение электромотором. Действующая на маятник со стороны пружины вынуждающая сила будет практически синусоидальна, если размах движения левого конца пружины В будет много больше амплитуды колебаний стержня маятника в точке закрепления пружины.



Уравнение движения.

У равнение движения для этой и других подобных систем, в которых наряду с возвращающей силой и силой сопротивления на осциллятор действует вынуждающая внешняя сила, синусоидально изменяющаяся со временем, можно записать в видеЗдесь левая часть в соответствии со вторым законом Ньютона, является произведением массы на ускорение. Первый член в правой части представляет собой возвращающую силу, пропорциональную смещению из положения равновесия. Для подвешенного на пружине груза это упругая сила, а во всех других случаях, когда ее физическая природа иная, эту силу называют квазиупругой. Второе слагаемое есть сила трения, пропорциональная скорости, например сила сопротивления воздуха или сила трения в оси. Амплитуду и частоту со раскачивающей систему вынуждающей силы будем считать постоянными.Разделим обе части уравнения на массу и введем обозначенияВ отсутствие вынуждающей силы правая часть уравнения обращается в нуль и оно, как и следовало ожидать, сводится к уравнению собственных затухающих колебаний.Опыт показывает, что во всех системах под действием синусоидальной внешней силы в конце концов устанавливаются колебания, которые также происходят по синусоидальному закону с частотой вынуждающей силы со и с постоянной амплитудой а, но с некоторым сдвигом по фазе относительно вынуждающей силы. Такие колебания называются установившимися вынужденными колебаниями.Установившиеся колебания. Рассмотрим вначале именно установившиеся вынужденные колебания, причем для простоты пренебрежем трением. В этом случае в уравнении не будет члена, содержащего скорость.Попробуем искать решение, соответствующее установившимся вынужденным колебаниям, в видеВычислим вторую производную и подставим ее вместе в уравнениеЧтобы это равенство было справедливо в любой момент времени, коэффициенты при слева и справа должны быть одинаковы. Из этого условия находим амплитуду колебаний. Исследуем зависимость амплитуды а от частоты со вынуждающей силы. График этой зависимости показан на рис. 179. Подставив сюда значения, видим, что постоянная во времени сила просто смещает осциллятор в новое положение равновесия, сдвинутое от старого. Из следует, что при смещениеФазовые соотношения. По мере роста частоты со вынуждающей силы от установившиеся коле- рис. 179. график зависимости происходят в фазе с вынуждающей силой, а их амплитуда постоянно увеличивается, сначала медленно, а по мере приближения к все быстрее и быстрее при амплитуда колебаний неограниченно возрастает.При значениях, превосходящих частоту собственных колебаний, формула дает для а отрицательное значение (рис. 179). Из формулы ясно, что при колебания происходят в противофазе с вынуждающей силой: когда сила действует в одну сторону, осциллятор смещен в противоположную. При неограниченном увеличении частоты вынуждающей силы амплитуда колебаний стремится к нулю.

Амплитуду колебаний во всех случаях удобно считать положительной, чего легко добиться, вводя сдвиг фаз между вынуждающей Здесь а по-прежнему дается формулой, а сдвиг фазы равен нулю при. Графики зависимости от частоты вынуждающей силы показаны на рис. 180.



Резонанс.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы имеет немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении частоты со вынуждающей силы к собственной частоте со0 осциллятора называется резонансом.Формула дает выражение для амплитуды вынужденных колебаний в пренебрежении трением. Именно с этим пренебрежением связано обращение амплитуды колебаний в бесконечность при точном совпадении частот. Реально амплитуда колебаний в бесконечность, конечно же, обращаться не может.Это означает, что при описании вынужденных колебаний вблизи резонанса учет трения принципиально необходим. При учете трения амплитуда вынужденных колебаний при резонансе получается конечной. Она будет тем меньше, чем больше трение в системе. Вдали от резонанса формулой можно пользоваться для нахождения амплитуды колебаний и при наличии трения, если оно не слишком сильное. Более того, эта формула, полученная без учета трения, имеет физический смысл только тогда, когда трение все же есть. Дело в том, что само понятие установившихся вынужденных колебаний применимо только к системам, в которых есть трение.

Если бы трения совсем не было, то процесс установления колебаний продолжался бы бесконечно долго. Реально это означает, что полученное без учета трения выражение для амплитуды вынужденных колебаний будет правильно описывать колебания в системе только спустя достаточно большой промежуток времени после начала действия вынуждающей силы. Слова «достаточно большой промежуток времени» означают здесь, что уже закончился переходный процесс, длительность которого совпадает с характерным временем затухания собственных колебаний в системе. При малом трении установившиеся вынужденные колебания происходят в фазе с вынуждающей силой при со и в противофазе при, как и в отсутствие трения. Однако вблизи резонанса фаза меняется не скачком, а непрерывно, причем при точном совпадении частот смещение отстает по фазе от вынуждающей силы на (на четверть периода). Скорость изменяется при этом в фазе с вынуждающей силой, что обеспечивает наиболее благоприятные условия для передачи энергии от источника внешней вынуждающей силы к осциллятору.

Какой физический смысл имеет каждый из членов в уравнении, описывающем вынужденные колебания осциллятора?

Что такое установившиеся вынужденные колебания?

При каких условиях можно использовать формулу для амплитуды установившихся вынужденных колебаний, полученную без учета трения?

Что такое резонанс? Приведите известные вам примеры проявления и использования явления резонанса.

Опишите сдвиг по фазе между вынуждающей силой и смешением при разных соотношениях между частотой в вынуждающей силы и собственной частотой осциллятора.

Чем определяется длительность процесса установления вынужденных колебаний? Дайте обоснование ответа.



Векторные диаграммы.

Убедиться в справедливости приведенных выше утверждений можно, если получить решение уравнения, описывающее установившиеся вынужденные колебания при наличии трения. Поскольку установившиеся колебания происходят с частотой вынуждающей силы со и некоторым сдвигом по фазе, то решение уравнения, соответствующее таким колебаниям, следует искать в видеПри этом скорость и ускорение, очевидно, тоже будут изменяться со временем по гармоническому закону.Амплитуду а установившихся вынужденных колебаний и сдвиг фазы удобно определять с помощью векторных диаграмм. Воспользуемся тем обстоятельством, что мгновенное значение любой изменяющейся по гармоническому закону величины можно представить как проекцию вектора на некоторое заранее выбранное направление, причем сам вектор равномерно вращается в плоскости с частотой со, а его неизменная длина равна амплитудному значению этой осциллирующей величины. В соответствии с этим сопоставим каждому члену уравнения вращающийся с угловой скоростью вектор, длина которого равна амплитудному значению этого члена.Поскольку проекция суммы нескольких векторов равна сумме проекций этих векторов, то уравнение означает, что сумма векторов, сопоставляемых членам, стоящим в левой части, равна вектору, сопоставляемому величине, стоящей в правой части. Чтобы построить эти векторы, выпишем мгновенные значения всех членов левой части уравнения, учитывая соотношения.Из формул видно, что вектор длины, сопоставляемый величине, опережает на угол вектор, сопоставляемый величине. Вектор длины, сопоставляемый члену, опережает на вектор длины. эти векторы направлены в противоположные стороны.


Взаимное расположение этих векторов для произвольного момента времени показано на рис. 181. Вся система векторов вращается как целое с угловой скоростью со против часовой стрелки вокруг точки. Мгновенные значения всех величинполучаются проецированием соответствующих векторов на заранее выбранное направление. Вектор, сопоставляемый правой части уравнения, равен сумме векторов, изображенных на рис. 181. Это сложение показано на рис. 182. Применяя теорему Пифагора, получаем откуда находим амплитуду установившихся вынужденных колебаний.Сдвиг фазы между вынуждающей силой и смещением, как видно из векторной диаграммы на рис. 182, отрицателен, так как вектор длины отстает от вектора. ПоэтомуИтак, установившиеся вынужденные колебания происходят по гармоническому закону, где определяются формулами.



Резонансные кривые.

Амплитуда установившихся вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Исследуем зависимость амплитуды колебаний от частоты со вынуждающей силы. При малом затухании у эта зависимость имеет очень резкий характер. Если, то при стремлении со к частоте свободных колебаний амплитуда вынужденных колебаний а стремится к бесконечности, что совпадает с полученным ранее результатом. При наличии затухания амплитуда колебаний в резонансе уже не обращается в бесконечность, хотя и значительно превышает амплитуду колебаний под действием внешней силы той же величины, но имеющей частоту, далекую от резонансной. Резонансные кривые при разных значениях постоянной затухания у приведены на рис. 183.

Для нахождения частоты резонанса сорез, нужно найти, при каком со подкоренное выражение в формуле имеет минимум. Приравнивая производную этого выражения по со нулю или дополняя его до полного квадрата, убеждаемся, что максимум амплитуды вынужденных колебаний имеет место при Резонансная частота оказывается меньше частоты свободных колебаний системы. При малых у резонансная частота практически совпадает. При стремлении частоты вынуждающей силы к бесконечности при, амплитуда а, как видно, стремится к нулю при действии постоянной внешней силы. Это есть статическое смещение осциллятора из положения равновесия под действием постоянной силы.Максимальная амплитуда. Амплитуду вынужденных колебаний в резонансе находим, подставляя частоту из в выражение.Амплитуда колебаний в резонансе тем больше, чем меньше постоянная затухания. При изучении вынужденных колебаний вблизи резонанса трением пренебрегать нельзя, как бы мало оно ни было: только при учете затухания амплитуда в резонансе яре, получается конечной.Интересно сравнить значение со статическим смещением под действием силы. Составляя отношение, получаем при малом затуханииПодставляя сюда и учитывая, что есть время жизни собственных затухающих колебаний для той же системы в отсутствие внешних сил, находимНо есть число колебаний, совершаемых затухающим осциллятором за время жизни колебаний. Таким образом, резонансные свойства системы характеризуются тем же параметром, что и собственные затухающие колебания.Фазовые соотношения. Формула дает возможность проанализировать изменение сдвига фазы между внешней силой и смещением, при вынужденных колебаниях. При значение д близко к нулю. Это означает, что при низких частотах смещение осциллятора происходит в фазе с внешней силой. При медленном вращении кривошипа на рис. 178 маятник движется в такт с правым концом шатуна.Если стремится к нулю со стороны отрицательных значений,сдвиг фазы равен и смещение осциллятора происходит в противофазе с вынуждающей силой. В резонансе, как видно из, смещение отстает по фазе от внешней силы. Вторая из формул показывает, что при этом внешняя сила изменяется в фазе со скоростью все время действует в направлении движения. Что именно так и должно быть, ясно из интуитивных соображений.Резонанс скорости. Из формулы видно, что амплитуда колебаний скорости при установившихся вынужденных колебаниях равна. С помощью получаемЗависимость амплитуды скорости от частоты внешней силы показана на рис. 184. Резонансная кривая для скорости хотя и похожа на резонансную кривую для смещения, но отличается от нее в некоторых отношениях. Так, при при действии постоянной силы, осциллятор испытывает статическое смещение из положенияравновесия и скорость его после того, как закончится переходный процесс, равна нулю. Из формулы видно, что амплитуда скорости при обращается в нуль. Резонанс скорости имеет место при точном совпадении частоты внешней силы с частотой свободных колебаний.

Векторная диаграмма. Сложение колебаний.

Решение ряда задач теории колебаний значительно облегчается и становится более наглядным, если изображать колебания графически, используя метод векторных диаграмм. Выберем некоторую ось х . Из точки 0 на оси отложим вектор длины , образующий вначале с осью угол (рис.2.14.1). Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось х будет изменяться с течением времени по закону

.

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, который образует вектор с осью в начальный момент времени. Угол, образованный вектором с осью в данный момент времени определяет фазу колебания в этот момент - .

Из сказанного следует, что гармоническое колебание можно представить с помощью вектора, длина которого равна амплитуде колебания, а направление его образует с некоторой осью угол, равный фазе колебания. В этом и состоит суть метода векторных диаграмм.

Сложение колебаний одинакового направления.

Рассмотрим сложение двух гармонических колебаний, направления которых параллельны:

. (2.14.1)

Результирующее смещение х будет суммой и . Это будет колебание с амплитудой .

Воспользуемся методом векторных диаграмм (рис.2.14.2). На рисунке , и - фазы результирующего и складываемых колебаний соответственно. Легко видеть, что можно найти сложением векторов и . Однако, если частоты складываемых колебаний различны, то результирующая амплитуда меняется с течением времени по величине и вектор вращается с непостоянной скоростью, т.е. колебание не будет гармоническим, а будет представлять некоторый сложный колебательный процесс. Чтобы результирующее колебание было гармоническим, частоты складываемых колебаний должны быть одинаковы

и результирующее колебание происходит с той же частотой

.

Из построения видно, что

Проанализируем выражение (2.14.2) для амплитуды результирующего колебания. Если разность фаз складываемых колебаний равна нулю (колебания синфазны), амплитуда равна сумме амплитуд складываемых колебаний , т.е. имеет максимальное из возможных значение . Если разность фаз составляет (колебания находятся в противофазе), то результирующая амплитуда равна разности амплитуд , т.е. имеет минимальное из всех возможных значение .

Сложение взаимно перпендикулярных колебаний.

Пусть частица совершает два гармонических колебания с одной и той же частотой: одно вдоль направления, которое обозначим х , другое – в перпендикулярном направлении y . В этом случае частица будет двигаться по некоторой, в общем случае, криволинейной траектории, форма которой зависит от разности фаз колебаний.

Выберем начало отсчета времени так, чтобы начальная фаза одного колебания была равна нулю:

. (2.14.3)

Чтобы получить уравнение траектории частицы, нужно из (2.14.3) исключить t . Из первого уравнения , а. значит, . Второе уравнение перепишем

или

.

Перенеся первое слагаемое из правой части уравнения в левую, возведя полученное уравнение в квадрат и проведя преобразования, получим

. (2.14.4)

Это уравнение представляет собой уравнение эллипса, оси которого повернуты относительно осей х и y на некоторый угол. Но в некоторых частных случаях получают более простые результаты.

1. Разность фаз равна нулю. Тогда из (2.14.4) получим

или . (2.14.5)

Это уравнение прямой (рис.2.14.3). Таким образом, частица совершает колебания вдоль этой прямой с частотой и амплитудой, равной .

Метод комплексных амплитуд

Положение точки на плоскости можно однозначно задать комплексным числом:

Если точка ($А$) вращается, то координаты этой точки изменяются в соответствии с законом:

запишем $z$ в виде:

где $Re(z)=x$, то есть физическая величина x равна вещественной части комплексного выражения (4). При этом модуль комплексного выражения равен амплитуде колебаний -- $a$, его аргумент равен фазе (${\omega }_0t+\delta $). Иногда при взятии реальной части от $z$ знак операции Re опускают и получают символическое выражение:

Выражение (5) не следует принимать буквально. Часто формально упрощают (5):

где $A=ae^{i \delta}$ -- комплексная амплитуда колебания. Комплексный характер амплитуды $А$ обозначает, что колебание имеет начальную фазу неравную нулю.

Для того чтобы раскрыть физический смысл выражения типа (6), предположим, что частота колебаний (${\omega }_0$) имеет вещественную и мнимую части, и ее можно представить как:

Тогда выражение (6) можно записать как:

В том случае, если ${\omega }2>0,$ то выражение (8) описывает затухающие гармонические колебания с круговой частотой $\omega1$ и показателем затухания ${\omega }_2$. Если ${\omega }_2

Замечание

Над комплексными величинами можно проводить многие математические операции так, как будто величины являются вещественными. Операции возможны, если они сами линейны и вещественны (такими являются сложение, умножение, дифференцирование по вещественной переменной и другие, но не все). Надо помнить, что комплексные величины сами по себе не соответствуют никаким физическим величинам.

Метод векторных диаграмм

Пусть точка $A$ равномерно вращается по окружности радиуса $r$ (рис.1), скорость ее вращения ${\omega }_0$.

Рисунок 1.

Положение точки $А$ на окружности можно задать с помощью угла $\varphi $. Этот угол равен:

где $\delta =\varphi (t=0)$ величина угла поворота радиус-вектора $\overrightarrow{r}$ в начальный момент времени. Если точка $М$ вращается, то ее проекция на $ось X$ движется по диаметру окружности, совершая гармонические колебания между точками $М$ $N$. Абсциссу точки $А$ можно записать как:

Подобным способом можно представлять колебания любых величин.

Необходимо только принять изображение величины, которая совершает колебания абсциссой точки $А$, которая равномерно вращается по окружности. Можно, конечно использовать и ординату:

Замечание 1

Для того чтобы представлять затухающие колебания, надо брать не окружность, а логарифмическую спираль, которая приближается к фокусу. Если скорость приближения движущейся по спирали точки постоянна и очка движется к фокусу, то проекция этой точки на $ось X$ даст формулы затухающих колебаний.

Замечание 2

Вместо точки можно использовать радиус-вектор, который будет равномерно вращаться вокруг начала координат. Тогда величина, которая совершает гармонические колебания, будет изображаться как проекция этого вектора на $ось X$. При этом математические операции над величиной $x$ заменяют операциями над вектором.

Так операцию суммирования двух величин:

удобнее заменить суммированием двух векторов (используя правило параллелограмма). Векторы выбрать так, что их проекции на избранную $ось X$ являются выражениями $x_1\ и\ x_2$. Тогда результат операции суммирования векторов в проекции на ось абсцисс будет равен $x_1+\ x_2$.

Пример 1

Продемонстрируем применение метода векторных диаграмм.

Итак, представим комплексные числа векторами на комплексной плоскости. Величина, изменяющаяся по гармоническому закону, изображена вектором, который вращается с частотой ${\omega }0$ вокруг своего начала против часовой стрелки. Длина вектора равна амплитуде колебаний.

Графический метод решения, например, уравнения:

где $Z=R+i(\omega L-\frac{1}{\omega C})$ -- импеданс, представим с помощью рис.2. На этом рисунке изображена векторная диаграмма напряжений в цепи переменного тока.

Рисунок 2.

Учтем, что умножение комплексной величины на комплексную единицу означает ее поворот на угол $90^0$ против часовой стрелки, а умножение на ($-i$) на тот же угол по часовой стрелке. Из рис.2 ледует, что:

где $-\frac{\pi }{2}\le \varphi \le \frac{\pi }{2}.$ Изменение угла $\varphi $ зависит от соотношения между импедансами элементов цепи и частотами. Внешнее напряжение может изменяться по фазе, от совпадающего с напряжением на индуктивности, до совпадающего с напряжением на емкости. Выражается это обычно в виде отношения между фазами напряжений на элементах цепи и фазой внешнего напряжения:

    Фаза напряжения на индуктивности ${(U}L=i\omega LI)$ всегда опережает фазу внешнего напряжения на угол от $0$ до $\pi .$

    Фаза напряжения на емкости ${(U}C=-\frac{iI}{\omega C}$) всегда отстает от фазы внешнего напряжения на угол между $0$ и --$\ \pi .$

    При этом фаза на сопротивлении может как опережать, так и отставать от фазы внешнего напряжения на угол между- $\frac{\pi }{2}$ и $\frac{\pi }{2}$.

Векторная диаграмма (рис.2) позволяет сформулировать следующее:

    Фаза напряжения на индуктивности опережает фазу силы тока на $\frac{\pi }{2}$.

    Фаза напряжения на емкости отстает на $\frac{\eth }{2}\ $от фазы силы тока.

    Фаза напряжения на сопротивлении совпадает с фазой силы тока.

Пример 2

Задание: Продемонстрируйте то, что операцию возведения в квадрат нельзя применять к комплексным величинам как к вещественным числам.

Решение:

Допустим, что надо возвести в квадрат вещественное число $x$. Правильный ответ: $x^2$. Формально применим комплексный метод. Произведем замену:

$x\to x+iy$. Возведем полученное выражение в квадрат, получим:

\[{\left(x+iy\right)}^2=x^2-y^2+2xyi\ \left(2.1\right).\]

Вещественная часть выражения (2.1) равна:

\[{Re\left(x+iy\right)}^2=Re\left(x^2-y^2+2xyi\right)=x^2-y^2\ne x^2.\]

Причина ошибки в том, что операция возведения в квадрат не является линейной.

Одно и то же тело может одновременно участвовать в двух и более движениях. Простым примером является движение шарика, брошенного под углом к горизонту. Можно считать, что шарик участвует в двух независимых взаимно перпендикулярных движениях: равномерном по горизонтали и равнопеременном по вертикали. Одно и то же тело (материальная точка) может участвовать в двух (и более) движениях колебательного типа.

Под сложением колебаний понимают определение закона результирующего колебания, если колебательная система одновременно участвует в нескольких колебательных процессах. Различают два предельных случая – сложение колебаний одного направления и сложение взаимно перпендикулярных колебаний.

2.1. Сложение гармонических колебаний одного направления

1. Сложение двух колебаний одного направления (сонаправленных колебаний)

можно провести с помощью метода векторных диаграмм (Рисунок 9) вместо сложения двух уравнений.

На Рисунке 2.1 показаны векторы амплитуд А 1 (t) и А 2 (t) складываемых колебаний в произвольный момент времени t, когда фазы этих колебаний соответственно равны и . Сложение колебаний сводится к определению . Воспользуемся тем фактом, что на векторной диаграмме сумма проекций складываемых векторов равна проекции векторной суммы этих векторов.

Результирующему колебанию соответствует на векторной диаграмме вектор амплитуды и фаза .

Рисунок 2.1 – Сложение сонаправленных колебаний.

Величина вектора А (t) может быть найдена по теореме косинусов:

Фаза результирующего колебания задается формулой:

.

Если частоты складываемых колебаний ω 1 и ω 2 не равны, то и фаза φ(t), и амплитуда А (t) результирующего колебания будут изменяться с течением времени. Складываемые колебания называются некогерентными в этом случае.

2. Два гармонических колебания x 1 и x 2 называются когерентными , если разность их фаз не зависит от времени:

Но так как , то для выполнения условия когерентности двух этих колебаний должны быть равны их циклические частоты .

Амплитуда результирующего колебания, полученного при сложении сонаправленных колебаний с равными частотами (когерентных колебаний) равна:

Начальную фазу результирующего колебания легко найти, если спроектировать векторы А 1 и А 2 на координатные оси ОХ и ОУ (см. Рисунок 9):

.

Итак, результирующее колебание, полученное при сложении двух гармонических сонаправленных колебаний с равными частотами, также является гармоническим колебанием .

3. Исследуем зависимость амплитуды результирующего колебания от разности начальных фаз складываемых колебаний.

Если , где n – любое целое неотрицательное число

(n = 0, 1, 2…), то минимальной . Складываемые колебания в момент сложения находились в противофазе . При результирующая амплитуда равна нулю .

Если , то , т.е. результирующая амплитуда будет максимальной . В момент сложения складываемые колебания находились в одной фазе , т.е. были синфазны . Если амплитуды складываемых колебаний одинаковы , то .

4. Сложение сонаправленных колебаний с неравными, но близкими частотами .

Частоты складываемых колебаний не равны , но разность частот много меньше и ω 1 , и ω 2 . Условие близости складываемых частот записывается соотношениями .

Примером сложения сонаправленных колебаний с близкими частотами является движение горизонтального пружинного маятника, жесткость пружин которого немного различна k 1 и k 2 .

Пусть амплитуды складываемых колебаний одинаковы, а начальные фазы равны нулю . Тогда уравнения складываемых колебаний имеют вид:

, .

Результирующее колебание описывается уравнением:

Получившееся уравнение колебаний зависит от произведения двух гармонических функций: одна – с частотой , другая – с частотой , где ω близка к частотам складываемых колебаний (ω 1 или ω 2). Результирующее колебание можно рассматривать как гармоническое колебание с изменяющейся по гармоническому закону амплитудой. Такой колебательный процесс называется биениями . Строго говоря, результирующее колебание в общем случае не является гармоническим колебанием.

Абсолютное значение косинуса взято потому, что амплитуда – величина положительная. Характер зависимости х рез. при биениях показан на Рисунке 2.2.

Рисунок 2.2 – Зависимость смещения от времени при биениях.

Амплитуда биений медленно меняется с частотой . Абсолютное значение косинуса повторяется, если его аргумент изменяется на π, значит и значение результирующей амплитуды повторится через промежуток времени τ б, называемый периодом биений (см. Рисунок 12). Величину периода биений можно определить из следующего соотношения:

Величина - период биений.

Величина есть период результирующего колебания (Рисунок 2.4).

2.2. Сложение взаимно перпендикулярных колебаний

1. Модель, на которой можно продемонстрировать сложение взаимно перпендикулярных колебаний, представлена на Рисунке 2.3. Маятник (материальная точка массой m) может совершать колебания по осям ОХ и ОУ под действием двух сил упругости, направленных взаимно перпендикулярно.

Рисунок 2.3

Складываемые колебания имеют вид:

Частоты колебаний определяются как , , где , -коэффициенты жесткости пружин.

2. Рассмотрим случай сложения двух взаимно перпендикулярных колебаний с одинаковыми частотами , что соответствует условию (одинаковые пружины). Тогда уравнения складываемых колебаний примут вид:

Когда точка участвует одновременно в двух движениях, ее траектория может быть различной и достаточно сложной. Уравнение траектории результирующего колебаний на плоскости ОХУ при сложении двух взаимно перпендикулярных с равными частотами можно определить, исключив из исходных уравнений для х и y время t:

Вид траектории определяется разностью начальных фаз складываемых колебаний, которые зависят от начальных условий (см. § 1.1.2). Рассмотрим возможные варианты.

а) Если , где n = 0, 1, 2…, т.е. складываемые колебания синфазные, то уравнение траектории примет вид:

(Рисунок 2.3 а).

Рисунок 2.3.а

Рисунок 2.3 б

б) Если (n = 0, 1, 2 …), т.е. складываемые колебаний находятся в противофазе, то уравнение траектории записывается так:

(Рисунок 2.3б).

В обоих случаях (а, б) результирующее движение точки будет колебание по прямой, проходящей через точку О. Частота результирующего колебания равна частоте складываемых колебаний ω 0 , амплитуда определяется соотношением.

Может случиться так, что осциллятор принимает участие в двух одинаково направленных колебаниях с разными амплитудами, частотами и начальными фазами. Рассмотрим сложение таких колебаний.

Сложение колебаний с одинаковыми частотами

Для простоты рассмотрим сначала случай, когда частоты складываемых колебаний одинаковы. Общие решения складываемых гармонических колебаний имеют вид:

где x 1 , x 2 - переменные, описывающие колебания, A 1 , A 2 - их амплитуды, а , - начальные фазы. Результирующее колебание

удобно найти с помощью векторной диаграммы . Этот метод использует аналогию между вращением и колебательным процессом.

Возьмем общее решение (1.23) для гармонического колебания. Выберем ось 0x . Из точки 0 отложим вектор длиной A , образующий с осью 0x угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца этого вектора будет перемещаться по оси 0x от +A до –A , причем величина проекции будет изменяться по закону

Таким образом, проекция конца вектора на ось 0x будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени (рис. 1.12).

Рис. 1.12. Векторная диаграмма для общего решения (1.23)

Применим теперь эту технику к сложению колебаний (1.34). Представим оба колебания с помощью векторов А 1 и А 2 Возьмем их векторную сумму (рис. 1.13)

Рис. 1.13. Векторная диаграмма для сложения одинаково направленных колебаний одинаковой частоты

Проекция вектора А 1 на ось 0x равна сумме проекций соответствующих векторов

Таким образом, вектор А представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой A и начальной фазой a. Согласно теореме косинусов:

В частности, если фазы складываемых колебаний равны или отличаются на величину, кратную (то есть ), то амплитуда результирующего колебания равна сумме амплитуд

Если же складываемые колебания находятся в противофазе (то есть ), то


Биения

В этом разделе мы рассмотрим случай сложения одинаково направленных гармонических колебаний с разными частотами. На практике особый интерес представляет случай, когда складываемые колебания мало отличаются по частоте. Как мы увидим, в результате сложения этих колебаний получаются колебания с периодически изменяющейся амплитудой, называемые биениями .

Для простоты рассмотрим случай, когда амплитуды складываемых колебаний равны A , а начальные фазы обоих колебаний равны нулю. Частоты складываемых колебаний равны, соответственно, и . Итак,

Складываем эти выражения и учитываем известную формулу тригонометрии:

Если то в аргументе второго косинуса мы можем пренебречь сдвигом частоты:

Кроме того, множитель в скобках меняется медленно по сравнению с . Поэтому результирующее колебание x можно рассматривать как модулированное гармоническое колебание с частотой w , эффективная амплитуда которого изменяется со временем по закону (1.40) (рис. 1.14):

Подчеркнем, что в строгом смысле такое колебание не является гармоническим, и еще раз напомним, что, согласно определению, колебание гармоническое, если оно происходит по закону , причем все три его параметра: строго постоянны во времени.


Рис. 1.14. Биения при сложении колебаний с близкими частотами

Частота пульсаций амплитуды (ее называют частотой биений ) равна разности частот складываемых колебаний. Период биений равен


Колебания двух связанных осцилляторов

Приведем поучительный пример системы, в которой возникают биения. Рассмотрим два груза массой m , которые могут колебаться под действием двух одинаковых пружин с коэффициентами жесткости k . Пусть грузы соединены также мягкой пружиной с коэффициентом жесткости K<. Будем полагать длины всех пружин в нерастянутом состоянии одинаковыми и равными 2L (рис. 1.15).


Рис. 1.15. Пример связанных осцилляторов.
Колебания происходят вдоль оси 0х, сила тяжести не учитывается

Тогда в положении равновесия координаты грузов равны

При колебаниях координаты равны, соответственно, x 1 (t) , x 2 (t) . Удлинения пружин записываются как

Мы имеем дело с системой с двумя степенями свободы. Составим уравнения движения. На первый груз действуют сила со стороны пружины k, равная

и сила со стороны пружины K , равная

На второй груз действуют аналогичные силы

Соответственно, уравнения движения имеют вид

Эти уравнения не слишком похожи на первый взгляд на уравнения гармонических колебаний, потому что на колебания x 1 оказывают влияния колебания x 2 и наоборот. Поэтому преобразуем уравнения к новым переменным, уравнения для которых были бы независимыми (такие переменные называют нормальными координатами, а соответствующие им колебания - нормальными колебаниями (модами)) . Именно, введем новые переменные x 1 иx 2 :

Как легко убедиться, положениям равновесия соответствуют нулевые значения этих координат

В этих переменных уравнения (1.42) принимают вид:

Складывая и вычитая эти уравнения, приходим к паре независимых уравнений для введенных нормальных координат:

Первое уравнение описывает гармонические колебания с частотой

совпадающей с частотой колебаний пружинных маятников в отсутствие соединительной пружины К. Второе уравнение описывает колебания со сдвинутой частотой

Так как K<, имеем

Соответственно, мы получаем общее решение системы уравнений:

Общее решение для координат х 1 и х 2 колеблющихся точек следуют из (1.47) и (1.43):

Для примера рассмотрим случай, когда первая масса смещается на расстояние от положения равновесия и отпускается с нулевой начальной скоростью, а вторая масса остается в положении равновесия:

Этому соответствуют следующие начальные значения нормальных координат:Графики функций x 1 (t) , x 2 (t) показаны на рис. 1.16. Видна характерная картина биений.

Рис. 1.16. Биения в системе двух связанных осцилляторов

В начальный момент времени колеблется лишь первый груз. Затем начинает колебаться второй, а амплитуда колебаний первого уменьшается. Через время первый груз останавливается, а второй колеблется с максимально возможной амплитудой. Произошла «перекачка» энергии от первого маятника ко второму. Затем процесс «перекачки» энергии идет в обратном направлении и к моменту первый маятник колеблется с максимальной амплитудой, а второй покоится.

На рис. 1.17 демонстрируются биения в системе двух связанных математических маятников.

Рис. 1.17. Биения в системе связанных маятников

Выясним теперь физический смысл нормальных мод, соответствующих чисто гармоническим колебаниям системы. Если возбуждены колебания только первой из них (x 1 ), то A 2 = 0 и, как следует из общего решения (1.48),

Из (1.53) видно, что первая нормальная мода соответствует такому колебанию, когда оба груза смещаются на одинаковые расстояния от их положений равновесия, но в противоположные стороны, другими словами - они колеблются в противофазе. Скорости движения грузов также равны по величине и противоположны по направлению, так что центр масс грузов остается неподвижным. Колебания происходят под действием пружин с жесткостью k, к которым добавляется соединительная пружина с жесткостью К. Как следствие, частота таких колебаний больше частоты колебаний несвязанных осцилляторов

Возбуждение только второй (x 2 ) нормальной моды означает, что A 1 = 0 :

В этом случае грузы смещаются из положения равновесия в одну сторону на одинаковые расстояния, другими словами – они колеблются синфазно. Скорости их также одинаковы по величине и направлению. Соединительная пружина колеблется вместе с грузами, но остается не растянутой и потому не оказывает влияния, так что частота колебаний совпадает с частотой колебаний несвязанных маятников.

В разобранном случае мы познакомились с нормальными модами и выяснили, что их частоты сдвигаются по сравнению с частотами колебаний несвязанных маятников. Любое другое колебательное движение системы можно представить как суперпозицию нормальных мод. Аналогичным образом можно рассмотреть цепочку из множества связанных друг с другом осцилляторов и изучить их нормальные колебания. Такая система представляет собой модель кристаллической решетки.

Дополнительная информация

http://allphysics.ru/feynman/bieniya - Фейнмановские лекции по физике. Биения.