Зарождение и развитие органической химии. Великие учёные, внёсшие значительный вклад в развитие химии

Содержание

Введение

Химия изучает состав, свойства и превращения веществ, а также явления, которые сопровождают эти превращения. Одно из первых определений химии как науки дал русский ученый М.В. Ломоносов: «Химическая наука рассматривает свойства и изменения тел... состав тел... объясняет причину того, что с веществами при химических превращениях происходит». О Менделееву, химия - это учение об элементах и их соединениях. Химия относится к естественным наукам, которые изучают окружающий нас мир. Она тесно связана с другими естественными науками: физикой, биологией, геологией. Многие разделы совр науки возникли на стыке этих наук: физическая химия, геохимия, биохимия. Химия тесно связана также с другими отраслями науки и техники. В ней широко применяются математические методы, используются расчеты и моделирование процессов на электронно-выч машинах. В совр химии выделилось много самостоятельных разделов, наиболее важные из которых, кроме отмеченных выше, неорганическая химия, органическая химия, х. полимеров, аналитическая химия, электрохимия, коллоидная химия и другие.

Актуальность. Во все времена химия служит человеку в его практической деятельности. Еще в древности возникли ремесла, в основе которых лежали химические процессы: получение металлов, стекла, керамики, красителей. Большую роль играет химия в современной промышленности. Химическая и нефтехимическая промышленность являются важнейшими отраслями, без которых невозможно функционирование экономики. Среди важнейших продуктов следует назвать кислоты, щелочи, соли, минеральные удобрения, растворители, масла, пластмассы, каучуки и резины, синтетические волокна и многое другое. Развитие многих отраслей промышленности связано с химией: металлургия, машиностроение, транспорт, промышленность строительных материалов, электроника, легкая, пищевая промышленность.

Объектом изучения химии являются вещества. Обычно их подразделяют на смеси и чистые вещества. Среди последних выделяют простые и сложные. Простых веществ известно более 400, а сложных веществ - намного больше: несколько сот тысяч, относящихся к неорганическим, и несколько миллионов органических.

Во многих отраслях применяются химические методы, например, катализ (ускорение процессов), химическая обработка металлов, защита металлов от коррозии. Большую роль играет химия в развитии фармацевтической промышленности: основную часть всех лекарственных препаратов получают синтетическим путем. Исключительно большое значение химия имеет в сельском хозяйстве, которое использует минеральные удобрения, средства защиты растений от вредителей, регуляторы роста растений, химические добавки и консерванты к кормам для животных и другие продукты. Использование химических методов в сельском хозяйстве привело к возникновению ряда смежных наук

Цель работы

Задачи:

Объектом изучения органическая химия.

Предмет изучения:

Глава 1. Роль отечественных ученых в становлении и развитии мировой химии

    1. Предмет и пути развития органической химии

В 1828 г. немецкий химик Вёлер, работая с циановокислым аммонием, случайно получил мочевину.

В 1854 г. француз Бертло синтезировал вещества, относящиеся к жирам, а в 1861 г. русский ученый Бутлеров синтезировал вещества, относящиеся к классу сахаров. Это были тяжелые удары по виталистической теории, окончательно разбивающие убеждение о невозможности синтеза органических соединений. Эти и другие достижения химиков требовали теоретического объяснения и обобщения возможных путей синтеза органических соединений и связи их свойств со строением. Исторически первой теорией органической химии стала теория радикалов (Ж.Дюма, Ю.Либих, И.Берцелиус). По мнению авторов, многие превращения органических соединений протекают так, что некоторые группы атомов (радикалы), не изменяясь, переходят из одного органического соединения в другое. Однако, вскоре было установлено, что в органических радикалах атомы водорода могут замещаться даже на такие отличные от водорода по химической природе атомы, как атомы хлора, и при этом тип химического соединения сохраняется. Теорию радикалов сменила более совершенная и охватывающая больший экспериментальный материал теория типов (О.Лоран, Ш.Жерар, Ж.Дюма). Теория типов классифицировала органические вещества по типам превращений. К типу водорода относили углеводороды, к типу хлороводорода – галогенопроизводные, к типу воды – спирты, эфиры, кислоты и их ангидриды, к типу аммиака – амины. Однако накапливающийся огромный экспериментальный материал уже не укладывался в известные типы и, кроме того, теория типов не могла предсказать существование и пути синтеза новых органических соединений. Развитие науки требовало создания новой, более прогрессивной теории, для рождения которой уже существовали некоторые предпосылки: установлена четырехвалентность углерода (А.Кекуле и А.Кольбе, 1857 год), показана способность атома углерода образовывать цепочки атомов (А.Кекуле и А.Купер, 1857 год). Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества". Основные положения теории химического строения А.М.Бутлерова можно свести к следующему. 1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: диметиловый эфир (СН3–О–СН3) и этиловый спирт (С2Н5ОН). 2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга – как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт – жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C. Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии. 3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства. 4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями). 5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами. А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества. В дальнейшем развитии и обосновании теории строения органических соединений большую роль сыграли последователи Бутлерова - В.В.Марковников, Е.Е.Вагнер, Н.Д.Зелинский, А.Н.Несмеянов и др. Современный период развития органической химии в области теории характеризуется все возрастающим проникновением методов квантовой механики в органическую химию. С их помощью решаются вопросы о причинах тех или иных проявлений взаимного влияния атомов в молекулах. В области развития органического синтеза современный период характеризуется значительными успехами в получении многочисленных органических соединений, в число которых входят природные вещества - антибиотики, разнообразные лекарственные соединения, многочисленные высокомолекулярные соединения. Органическая химия глубоко проникла в сферу физиологии. Так, с химической точки зрения изучена гормональная функция организма, механизм передачи нервных импульсов. Ученые вплотную подошли к разрешению вопроса о строении и синтезе белка. Органическая химия как самостоятельная наука продолжает существовать и интенсивно развиваться. Это объясняется следующими причинами: 1. Многообразием органических соединений, обусловленным тем, что углерод в отличие от других элементов способен соединяться друг с другом, давая длинные цепочки (изомеры). В настоящее время известно около 6 млн. органических соединений, в то время как неорганических - только около 700 тысяч. 2. Сложностью молекул органических веществ, содержащих до 10 тысяч атомов (например, природные биополимеры - белки, углеводы). 3. Специфичностью свойств органических соединений по сравнению с неорганическими (неустойчивостью при сравнительно невысоких температурах, низкой – до 300°С – температурой плавления, горючестью). 4. Медленно идущими реакциями между органическими веществами по сравнению с реакциями, характерными для неорганических веществ, образованием побочных продуктов, спецификой выделения получающихся веществ и технологическим оборудованием. 5. Огромным практическим значением органических соединений. Они - наша пища и одежда, топливо, разнообразные лекарственные препараты, многочисленные полимерные материалы и т.д.

Классификация органических соединений. Огромное количество органических соединений классифицируют с учетом строения углеродной цепи (углеродного скелета) и наличия в молекуле функциональных групп. Простейшими представителями ациклических соединений являются алифатические углеводороды - соединения, содержащие только атомы углерода и водорода. Алифатические углеводороды могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Простейшим представителем алициклических углеводородов служит циклопропан, содержащий цикл из трех углеродных атомов. Ароматический ряд объединяет ароматические углеводороды - бензол, нафталин, антрацен и т.д., а также их производные. Гетероциклические соединения могут содержать в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (кислород, азот, серу и др.). В каждом представленном ряду органические соединения делятся на классы в зависимости от состава и строения. Наиболее простым классом органических соединений являются углеводороды. При замене атомов водорода в углеводородах на другие атомы или группы атомов (функциональные группы) образуются другие классы органических соединений данного ряда. Функциональная группа - атом или группа атомов, устанавливающие принадлежность соединения к классам органических соединений и определяющие главнейшие направления его химических превращений. Соединения с одной функциональной группой называются монофункциональными (метанол СН3–ОН), с несколькими одинаковыми функциональными группами - полифункциональными (глицерин), с несколькими разными функциональными группами - гетерофункциональными (молочная кислота СН3–СН–СООН). Соединения каждого класса составляют гомологические ряды. Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Основные классы органических соединений следующие: I. Углеводороды (R–H). II. Галогенопроизводные (R–Hlg). III. Спирты (R–OH).IV. Эфиры простые и сложные (R–O–R’, R–C). V. Карбонильные соединения (альдегиды и кетоны).VI. Карбоновые кислоты (R–C). VII. Амины (R–NH2, NH, R–N–R’).VIII. Нитросоединения (R–NO2). IX. Сульфокислоты (R–SO3H). Число известных классов органических соединений не ограничивается перечисленными, оно велико и с развитием науки все время увеличивается. Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращений функциональных групп без изменения углеродного скелета. Классификация реакций органических соединений по характеру химических превращений. Органические соединения способны к разнообразным химическим превращениям, которые могут проходить как без изменения углеродного скелета, так и с таковым. Большинство реакций проходит без изменения углеродного скелета. I. Реакции без изменения углеродного скелета. К реакциям без изменения углеродного скелета относятся следующие: 1) замещения: RH + Br2 ® RBr + HBr, 2) присоединения: CH2=CH2 + Br2 ® CH2Br – CH2Br, 3) отщепления (элиминирования): CH3–CH2–Cl ® CH2=CH2 + HCl, C2H5ONa 4) изомеризации. Реакции замещения характерны для всех классов органических соединений. Замещаться могут атомы водорода или атомы любого другого элемента, кроме углерода. Реакции присоединения характерны для соединений с кратными связями, которые могут быть между атомами углерода, углерода и кислорода, углерода и азота и т. д., а также для соединений, содержащих атомы со свободными электронными парами или вакантными орбиталями. К реакциям элиминирования способны соединения, содержащие электроотрицательные группировки. Легко отщепляются такие вещества, как вода, галогеноводороды, аммиак. К реакциям изомеризации без изменения углеродного скелета особенно склонны непредельные соединения и их производные. II. Реакции с изменением углеродного скелета. К этому типу превращений органических соединений относятся следующие реакции: 1) удлинения цепи, 2) укорачивания цепи, 3) изомеризации цепи, 4) циклизации, 5) раскрытия цикла, 6) сжатия и расширения цикла. Химические реакции проходят с образованием различных промежуточных продуктов. Путь, по которому осуществляется переход от исходных веществ к конечным продуктам, называется механизмом реакции. В зависимости от механизма реакции они делятся на радикальные и ионные. Ковалентные связи между атомами А и В могут разрываться таким образом, что электронная пара или делится между атомами А и В, или передается одному из атомов. В первом случае частицы А и В, получив по одному электрону, становятся свободными радикалами. Происходит гомолитическое расщепление: А: В ® А + В. Во втором случае электронная пара переходит к одной из частиц и образуются два разноименных иона. Поскольку образующиеся ионы имеют различные электронные структуры, этот тип разрыва связи называется гетеролитическим расщеплением: А: В ® А+ + :В- Положительный ион в реакциях будет стремиться присоединить к себе электрон, т. е. будет вести себя как электрофильная частица. Отрицательный ион – так называемая, нуклеофильная частица будет атаковать центры с избыточными положительными зарядами.

    1. Основные этапы развития химии

При изучении истории развития химии возможны два взаимно дополняющих подхода: хронологический и содержательный. При хронологическом подходе историю химии принято подразделять на несколько периодов. Следует учитывать, что периодизация истории химии, будучи достаточно условной и относительной, имеет скорее дидактический смысл. При этом на поздних этапах развития науки (в случае химии – уже с начала XIX века) в связи с её дифференциацией неизбежны отступления от хронологического порядка изложения, поскольку приходится отдельно рассматривать развитие каждого из основных разделов науки. Как правило, большинство историков химии выделяют следующие основные этапы её развития:

1. Предалхимический период: до III в. н.э.
В предалхимическом периоде теоретический и практический аспекты знаний о веществе развиваются относительно независимо друг от друга. Происхождение свойств вещества рассматривает античная натурфилософия, практические операции с веществом являются прерогативой ремесленной химии.

2. Алхимический период: III – XVI вв. Алхимический период, в свою очередь, разделяется на три подпериода – александрийскую (греко-египетскую), арабскую и европейскую алхимию. Алхимический период – это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. В этом периоде происходит зарождение экспериментальной химии и накопление запаса знаний о веществе; алхимическая теория, основанная на античных философских представлениях об элементах, тесно связана с астрологией и мистикой. Наряду с химико-техническим "златоделием" алхимический период примечателен также и созданием уникальной системы мистической философии.

3. Период становления (объединения): XVII – XVIII вв. В период становления химии как науки происходит её полная рационализация. Химия освобождается от натурфилософских и алхимических взглядов на элементы как на носители определённых качеств. Наряду с расширением практических знаний о веществе начинает вырабатываться единый взгляд на химические процессы и в полной мере использоваться экспериментальный метод. Завершающая этот период химическая революция окончательно придаёт химии вид самостоятельной (хотя и тесно связанной с другими отраслями естествознания) науки, занимающейся экспериментальным изучением состава тел.

4. Период количественных законов (атомно-молекулярной теории): 1789 – 1860 гг. Период количественных законов, ознаменовавшийся открытием главных количественных закономерностей химии – стехиометрических законов, и формированием атомно-молекулярной теории, окончательно завершает превращение химии в точную науку, основанную не только на наблюдении, но и на измерении.

5. Период классической химии: 1860 г. – конец XIX в. Период классической химии характеризуется стремительным развитием науки: создаётся периодическая система элементов, теория валентности и химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигают прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах начинается дифференциация химии – выделение её отдельных ветвей, приобретающих черты самостоятельных наук.

6. Современный период: с начала XX века по настоящее время. В начале ХХ века происходит революция в физике: на смену системе знаний о материи, основанной на механике Ньютона, приходят квантовая теория и теория относительности. Установление делимости атома и создание квантовой механики вкладывают новое содержание в основные понятия химии. Успехи физики в начале XX века позволили понять причины периодичности свойств элементов и их соединений, объяснить природу валентных сил и создать теории химической связи между атомами. Появление принципиально новых физических методов исследования предоставило химикам невиданные ранее возможности для изучения состава, структуры и реакционной способности вещества. Всё это в совокупности обусловило в числе прочих достижений и блестящие успехи биологической химии второй половины XX века – установление строения белков и ДНК, познание механизмов функционирования клеток живого организма. Содержательный подход к истории химии основывается на изучении того, как изменялись со временем теоретические основы науки. Вследствие изменений в теориях на всём протяжении существования химии постоянно менялось её определение. Химия зарождается как "искусство превращения неблагородных металлов в благородные"; Менделеев в 1882 г. определяет её как "учение об элементах и их соединениях". Определение из современного школьного учебника в свою очередь значительно отличается от менделеевского: "Химия – наука о веществах, их составе, строении, свойствах, взаимных превращениях и законах этих превращений". Следует отметить, что изучение структуры науки мало способствует созданию представления о путях развития химии в целом: общепринятое деление химии на разделы основано на целом ряде различных принципов. Деление химии на органическую и неорганическую произведено по различию их предметов (каковое различие, кстати, может быть правильно понято только при историческом рассмотрении). Выделение физической химии основано на её близости к физике, аналитическая химия выделена по признаку используемого метода исследования. В целом общепринятое деление химии на разделы является в значительной степени данью исторической традиции; каждый раздел в той или иной степени пересекается со всеми остальными. Основной задачей содержательного подхода к истории химии является, говоря словами Д. И. Менделеева, выделение "неизменного и общего в изменяемом и частном". Таким неизменным и общим для химических знаний всех исторических периодов является цель химии. Именно цель науки – не только теоретический, но и исторический её стержень. Целью химии на всех этапах её развития является получение вещества с заданными свойствами. Эта цель, иногда именуемая основной проблемой химии, включает в себя две важнейших задачи – практическую и теоретическую, которые не могут быть решены отдельно друг от друга. Получение вещества с заданными свойствами не может быть осуществлено без выявления способов управления свойствами вещества, или, что то же самое, без понимания причин происхождения и обусловленности свойств вещества. Таким образом, химия есть одновременно и цель и средство, и теория и практика. Теоретическая задача химии имеет ограниченное и строго определённое число способов решения, которые задаются структурной иерархией самого вещества, для которого можно выделить следующие уровни организации: 1. Субатомные частицы. 2. Атомы химических элементов.3. Молекулы химических веществ как унитарные (единые) системы. 4. Микро- и макроскопические системы реагирующих молекул. 5. Мегасистемы (Солнечная система, Галактика и т.п.). Объектами изучения химии является вещество на 2 – 4 уровнях организации. Исходя из этого, для разрешения проблемы происхождения свойств необходимо рассмотреть зависимость свойств вещества от трёх факторов: 1. От элементарного состава; 2. От структуры молекулы вещества; 3. От организации системы.

Заключение

Учение о составе возникло значительно раньше двух других концептуальных систем – уже в античной натурфилософии появляется понятие об элементах как о составных частях тел.
Структурная химия появляется в первой половине XIX-го века и исходит из следующего тезиса: свойства вещества определяются структурой молекулы вещества, т.е. её элементным составом, порядком соединения атомов между собой и их расположением в пространстве. Причиной появления структурной химии стало открытие явлений изомерии и металепсии (см. гл. V.2.), которые не могли быть объяснены в рамках существующих понятий. Для объяснения этих экспериментальных фактов предлагаются новые теории; объектом структурной химии становится молекула химического вещества как единое целое. Применительно к химической практике появление новой концептуальной системы означало в данном случае ещё и превращение химии из науки преимущественно аналитической в науку синтетическую. Учение о химическом процессе, сформировавшееся во второй половине XIX столетия, исходит из посылки, что свойства вещества определяются его составом, структурой и организацией системы, в которой это вещество находится. Учение о процессе выделяется в самостоятельную концепцию химии, когда накапливаются экспериментальные факты, указывающие на то, что законы, управляющие химическими реакциями, не могут быть сведены к составу вещества и структуре его молекулы. Знания состава вещества и структуры молекул часто оказывается недостаточно для предсказания свойств вещества, которые в общем случае обусловлены ещё и природой сореагентов, относительными количествами реагентов, внешними условиями, в которых находится система, наличием в системе веществ, стехиометрически не участвующих в реакции (примесей, катализаторов, растворителя и т.п.). Предметом изучения химии на этом уровне становится вся кинетическая система, в которой состав вещества и структура его молекул представлены лишь как частности. Эмпирические понятия химического сродства и реакционной способности получают теоретическое обоснование в химической термодинамике, химической кинетике и учении о катализе. Создание учения о химическом процессе дало возможность решить важнейшие практические вопросы управления химическими превращениями, внедрить в химическую технологию принципиально новые процессы.

Выводы

Еще в древности возникли ремесла, в основе которых лежали химические процессы: получение металлов, стекла, керамики, красителей. Большую роль играет химия в современной промышленности. Химическая и нефтехимическая промышленность являются важнейшими отраслями, без которых невозможно функционирование экономики. Среди важнейших продуктов следует назвать кислоты, щелочи, соли, минеральные удобрения, растворители, масла, пластмассы, каучуки и резины, синтетические волокна и многое другое. В настоящее время химическая промышленность выпускает несколько десятков тысяч наименований продукции.Исключительно важную роль играют химические продукты и процессы в энергетике, которая использует энергию химических реакций. Для энергетических целей используются многие продукты переработки нефти (бензин, керосин, мазут), каменный и бурый уголь, сланцы, торф. В связи с уменьшением природных запасов нефти вырабатывается синтетическое топливо путем химической переработки различного природного сырья и отходов производства. Развитие многих отраслей промышленности связано с химией: металлургия, машиностроение, транспорт, промышленность строительных материалов, электроника, легкая, пищевая промышленность- вот неполный список отраслей экономики, широко использующих химические продукты и процессы. Во многих отраслях применяются химические методы, например, катализ (ускорение процессов), химическая обработка металлов, защита металлов от коррозии. Большую роль играет химия в развитии фармацевтической промышленности: основную часть всех лекарственных препаратов получают синтетическим путем. Исключительно большое значение химия имеет в сельском хозяйстве, которое использует минеральные удобрения, средства защиты растений от вредителей, регуляторы роста растений, химические добавки и консерванты к кормам для животных и другие продукты. Использование химических методов в сельском хозяйстве привело к возникновению ряда смежных наук

Список использованных источников информации.

    Великие ученые [Электронный ресурс]. – Режим доступа: http://www.himhelp.ru/section27/. – Загл. с экрана. (1.09.2015).

    Воронков, М.Г. О химии и химиках и в шутку и всерьёз [Текст] / М.Г. Воронков, А.Ю. Рулёв. – М.: Мнемозина, 2011. – 319 с.

    Глинка, Н.Л. Общая химия [Текст]: учебник / под ред. В.А. Попкова, А.В. Бабкова. – М.: Юрайт, 2010. – 886 с.

    Неорганическая химия [Электронный ресурс]. – Режим доступа: http://www.xumuk.ru/encyklopedia/2/2836.html. – Загл. с экрана. (1.09.2015).

    Хронология открытия химических элементов [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/Хронология_открытия_химичесих_элементов. – Загл. с экрана. (1.09.2015).

Пояснительная записка

Органическая химия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза. Развитие органической химии - основа прогресса. Она имеет исключительно важное познавательное и народнохозяйственное значение. Природные органические вещества и их превращения лежат в основе явлений Жизни. Поэтому органическая химия является химическим фундаментом биологической химии и молекулярной биологии - наук, изучающих процессы, происходящие в клетках организмов на молекулярном уровне. Исследования в этой области позволяют глубже понять суть явлений живой природы. Множество синтетических органических соединений производится промышленностью для использования в самых разных отраслях человеческой деятельности. Это - нефтепродукты, горючее для различных двигателей, полимерные материалы (каучуки, пластмассы, волокна, пленки, лаки, клеи и т.д.), поверхностно-активные вещества, красители, средства защиты растений, лекарственные препараты, вкусовые и парфюмерные вещества и т.п. Без знания основ органической химии современный человек не способен экологически грамотно использовать все эти продукты цивилизации. Для современной молодежи важно знать, какой вклад внесли отечественное ученые в развитие науки, как повлияли их открытия на развитие России

Выбор данной темы обусловливается ее актуальностью.

Цель работы собрать и проанализировать имеющуюся литературу по данной теме, рассмотреть вклад и судьбу ученых в этой области, проанализировать роль открытий отечественных ученых в развитие органической химии.

Задачи:

    Рассмотреть биографические данные ученых;

    Проанализировать вклад русских ученых в развитие органической химии;

    Проанализировать информацию и сделать вывод о достижениях и их значении для страны.

Объектом изучения органическая химия.

Предмет изучения: Роль органической химии в развитиии промышленности.

После Ломоносова изучением органических веществ в России занимался Товий Егорович Ловиц .Он получил кристаллическую винную и ледяную уксусную кислоты, абсолютный этиловый спирт, а также усовершенствовал способы получения эфиров .

С 1838 года в Петербургском университете начал свою научную и педагогическую деятельность Александр Абрамович Воскресенский (1809-1880).Ему принадлежит ряд крупных исследований в области органической химии. Он установил Элементный состав нафталина, подробно изучил мочевую кислоту, выделил из бобов какао алкалоид – теобромин, близкий по составу к кофеину.

Зинин сделал еще очень многое в органической химии. Например, он исследовал продукты превращения мочевины и производные бензойного альдегида, впервые синтезировал горчичное масло. В 1853 он осуществил первую попытку применения нитроглицерина в качестве взрывчатого вещества .

Открытие в 1869 году Дмитрием Ивановичем Менделеевым периодического закона и создание системы химических элементов имело огромное значение не только химии, но и для всего нашего миропонимания. Это открытие стало основой современного учения о веществе. Менделеевым разработана гипотеза об органическом происхождении нефти. Также им было выдвинуто предложение о подземной газификации угля .

Александр Михайлович Бутлеров (1794-1886) закончил естественное отделение физико-математического факультета Казанского университета.

Подтверждением бутлеровской теории строения явился синтез изомасляной кислоты, впервые синтезированной В. В. Марковниковым. В 1869 году он подготовил докторскую диссертацию «Материалы к вопросу в химических соединениях». Объясняя взаимное влияние атомов в молекулах соединений, он привлек представление о химическом сродстве, проявление которого и обуславливает взаимовлияние атомов.

Н. А. Меншуткин опубликовал серию статей под общим заглавием «Исследование влияния изомерии спиртов и кислот на образован е сложных эфиров».

Он обнаружил зависимость скорости реакции от строения, концентрации реагирующих веществ и растворителя.

Многие выдающиеся открытия наших ученых-органиков сыграли большую роль в укреплении обороноспособности нашей Родины. Особенно это проявилось в годы Великой Отечественной войны. В первую очередь они решают проблемы, связанные с экологией. Вопросы ускоренного развития химической промышленности, более полного использования химии во многих отраслях хозяйства.

Человек живет в мире органических соединений, и сам является частью этого мира. Материальную основу всех известным нам форм жизни составляют функционирование и превращения органических соединений. Поэтому без знания природы и свойств этих соединений нельзя по-настоящему вникнуть в существо биологических явлений. Естественно, что биологические науки, являющиеся фундаментальными по отношению к таким, например, важнейшим для человека прикладным наукам, как сельскохозяйственные или медицинские, все в большей степени опираются на фундамент молекулярной биологии. Последняя, в свою очередь, основана на химии природных соединений, научной базой которой, несомненно, служит общая органическая химия.

Как наука органическая химия до середины XVIII века не существовала. К тому времени различали три вида химии: химию животных, растительную и минеральную. Химия животных изучала вещества, входящие в состав животных организмов; растительная – вещества, входящие в состав растений; минеральная – вещества, входящие в состав неживой природы. Этот принцип, однако, не позволял отделить органические вещества от неорганических. Например, янтарная кислота относилась к группе минеральных веществ, так как ее получали перегонкой ископаемого янтаря, поташ входил в группу растительных веществ, а фосфат кальция – в группу животных веществ, так как их получали прокаливанием соответственно растительных (древесина) и животных (кости) материалов.

В первой половине XIX века было предложено выделить соединения углерода в самостоятельную химическую дисциплину – органическую химию.

Среди ученых в то время господствовало виталистическое мировоззрение, согласно которому органические соединения образуются только в живом организме под влиянием особой, сверхъестественной «жизненной силы». Это означало, что получить органические вещества путем синтеза из неорганических невозможно, что между органическими и неорганическими соединениями лежит непреодолимая пропасть. Витализм настолько укрепился в умах ученых, что долгое время не предпринималось никаких попыток синтеза органических веществ. Однако витализм был опровергнут практикой, химическим экспериментом.

В 1828 г. немецкий химик Вёлер, работая с циановокислым аммонием, случайно получил мочевину

O
II
NH2–C–NH2.

В 1854 г. француз Бертло синтезировал вещества, относящиеся к жирам, а в 1861 г. русский ученый Бутлеров синтезировал вещества, относящиеся к классу сахаров. Это были тяжелые удары по виталистической теории, окончательно разбивающие убеждение о невозможности синтеза органических соединений.

Эти и другие достижения химиков требовали теоретического объяснения и обобщения возможных путей синтеза органических соединений и связи их свойств со строением.

Таким образом, органическая химия, как показывает само название, возникла в результате изучения органической живой материи, состава органических молекул.

В первой половине XIX в. органическая химия получила наибольшее развитие во Франции и Германии. Её успехи во многом связаны с именами немцев Ф. Вёлера, Ю. Либиха, Р. Бунзена и французов А. Дюма и Ш. Вюрца. Именно в их лабораториях стажировались молодые русские исследователи, которые стали основоположниками развития органической химии в нашей стране. Отметим, что научные командировки отечественных химиков за границу с 1830-х гг. начинают принимать массовый характер. Накопленные опыт и навыки впоследствии оказались чрезвычайно полезными.

Исторически первой теорией органической химии стала теория радикалов (Ж.Дюма, Ю.Либих, И.Берцелиус). По мнению авторов, многие превращения органических соединений протекают так, что некоторые группы атомов (радикалы), не изменяясь, переходят из одного органического соединения в другое. Однако, вскоре было установлено, что в органических радикалах атомы водорода могут замещаться даже на такие отличные от водорода по химической природе атомы, как атомы хлора, и при этом тип химического соединения сохраняется.

Теорию радикалов сменила более совершенная и охватывающая больший экспериментальный материал теория типов (О.Лоран, Ш.Жерар, Ж.Дюма). Теория типов классифицировала органические вещества по типам превращений. К типу водорода относили углеводороды, к типу хлороводорода – галогенопроизводные, к типу воды – спирты, эфиры, кислоты и их ангидриды, к типу аммиака – амины. Однако накапливающийся огромный экспериментальный материал уже не укладывался в известные типы и, кроме того, теория типов не могла предсказать существование и пути синтеза новых органических соединений. Развитие науки требовало создания новой, более прогрессивной теории, для рождения которой уже существовали некоторые предпосылки: установлена четырехвалентность углерода (А.Кекуле и А.Кольбе, 1857 год), показана способность атома углерода образовывать цепочки атомов (А.Кекуле и А.Купер, 1857 год).

«Дедушкой русской химии» назвал Д.И. Менделеев А.А. Воскресенского. Этот ученый фактически стимулировал начало систематических исследований органических соединений в России. Ученик Г.И. Гесса, он продолжил своё образование в лаборатории Либиха в Гисене. Здесь он впервые установил элементный состав нафталина и хинной кислоты, определил состав и предложил формулу хинона (1838). Вернувшись на родину, Воскресенский в 1841 г. выделил природный алкалоид - теобромин. Подобные достижения сделали бы честь любому химику-органику. Однако вскоре Воскресенский фактически прекратил экспериментальные исследования, целиком посвятив себя педагогической деятельности, чем немало способствовал подготовке высококвалифицированных кадров русских химиков.

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе «О химическом строении вещества».

Младший современник Воскресенского и Зинина - A.M. Бутлеров - считается наряду с Д.И. Менделеевым наиболее яркой фигурой отечественной химии девятнадцатого столетия. Будучи выпускником Казанского университета, он с 1851 по 1857 гг. провёл за границей, работая в Париже у Ш. Вюрца и в Гейдельберге у А. Кекуле. Последний оказал большое влияние на формирование его теоретических представлений. По словам самого А.М. Бутлерова, пребывание в лабораториях европейских учёных завершило его «превращение из ученика в учёного». Можно скзаать, он был излишне скромен в самооценке, ибо зарубежная деятельность А.М. Бутлерова характеризовалась достаточно высокой самостоятельностью

Основные положения теории химического строения А.М.Бутлерова можно свести к следующему.

1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: диметиловый эфир (СН3–О–СН3) и этиловый спирт (С2Н5ОН).

2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга – как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, tºпл. = -138ºC, tºкип. = 23,6ºC; этиловый спирт – жидкость с запахом, растворимая в воде, tºпл. = -114,5ºC, tºкип. = 78,3ºC.
Данное положение теории строения органических веществ объяснило явление изомерии, широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.

3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.

4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).

5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, третилбутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

«Звёздным» стал для А.М. Бутлерова 1861 год, когда он впервые синтезировал гексаметилентетраамин (уротропин) - соединение, важное в практическом и в теоретическом отношении, а также осуществил полный синтез сахаристого вещества, которое назвал «метиленитаном». А 19 сентября на Съезде немецких врачей и естествоиспытателей в Шпейере учёный выступил с докладом «О химическом строении веществ». В нём он сформулировал основные постулаты своей знаменитой теории строения органических соединений. Исходный постулат гласил: «….Химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением… Каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определенным количеством принадлежащей ему химической силы (сродства)». Хотя далеко не все современники разделяли представления А.М. Бутлерова и выступали с возражениями, теория химического строения оказала заметное влияние на развитие органической химии. Более того, она по существу стала первым фундаментальным обобщением эмпирических фактов в органической химии, принадлежащим русскому ученому. В период 1830– 1850 гг. западноевропейские учёные предложили немало теорий, которые ставили целью объяснить строение и свойства органических соединений. На смену одной теории приходила другая, часто противоположная по сути. Однако все эти теории в конечном счете внесли свой вклад в окончательное утверждение атомно-молекулярного учения. В России же в этот период органическая химия оставалась сугубо экспериментальной наукой. Главной её задачей был синтез новых соединений. С появлением теории А.М. Бутлерова ситуация заметным образом начала меняться.

Прежде всего сам ее автор широко применял свою теорию в экспериментальных работах подобно тому, как спустя несколько лет Д.И. Менделеев будет использовать прогностические возможности периодической системы для предсказания существования и свойств неизвестных элементов. На основе теории строения А.М. Бутлеров в 1864 г. предсказал и объяснил явление изомерии у многих органических соединений, а также осуществил синтез и установил строение целого ряда предельных и непредельных соединений. Отметим еще одно примечательное обстоятельство: в первые десятилетия своего становления отечественная органическая химия концентрировалась на исследованиях ароматических соединений. Начиная же с 1860-х гг. значительный размах получают работы, касающиеся алифатических соединений.

В 1864-1866 гг. А.М. Бутлеров работал над учебником «Введение к полному изучению органической химии». По характеристике, данной Вальденом, это был «первый учебник на русском языке, в котором на основании нового учения о химической структуре была изложена вся органическая химия. Он же - первый учебник вообще, давший в сжатой форме последовательное и полное применение этого учения».

Среди видных петербургских исследователей середины XIX в. нельзя не упомянуть Ю.Ф. Фрицше и Б.С. Якоби. Первый из них, уроженец Саксонии, прожил в России более 40 лет. Он был искусным экспериментатором, но его оригинальные работы не имели внутренней связи между собою, относясь к разным проблемам химии, хотя их «органическая составляющая» была весомой. Фрицше первым в России выделил анилин из индиго и получил антраниловую кислоту (1840), синтезировал динитроантрахинон, который дает цветную реакцию с ароматическими углеводородами, и извлек антрацен из каменноугольного дегтя (1866).

Б.С. Якоби, получивший образование в Берлинском и Гёттингенском университетах, возродил в России интерес к электрохимическим исследованиям. К его крупнейшим достижениям относится открытие в 1838 г. гальванопластики.

В дальнейшем развитии и обосновании теории строения органических соединений большую роль сыграли последователи Бутлерова – В. В. Марковников, Е. Е. Вагнер, Н. Д. Зелинский, А. Н. Несмеянов и др.

Из всех русских химиков В.В. Марковников внёс наиболее существенный вклад в теорию химического строения Бутлерова, в частности, развил учение о взаимном влиянии атомов. Он дал также чёткие определения понятий «изомерия» и «метамерия», сформулировал правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от строения химического соединения (правила Марковникова). Марковников практически заложил основы нефтехимии и открыл новый класс органических соединений - нафтены.

А.М. Зайцеву принадлежат фундаментальные работы в области органического синтеза. Среди них в первую очередь следует отметить разработанные им в 1870-1875 гг. методы получения спиртов различных классов через цинкорганические соединения. Подобные методы вскоре оказались универсальны ми для многих направлений органического синтеза.

В 1844 г. в отходах от переработки платиновой руды Клаус открыл новый химический элемент - рутений, название которого произошло от латинского названия России - Рутениа. Рутений был последним, остававшимся неизвестным представителем семейства благородных металлов. Й. Берцелиус, высоко оценивший это открытие, писал казанскому учёному, что его имя «будет неизгладимо начертано в истории химии». Клаус мог бы стать основоположником систематического исследования платиновых металлов в нашей стране. Его работы в то время заметно превосходили мировой уровень. Он изучал не только свойства отдельных элементов семейства, но и пытался установить закономерности изменения этих свойств. Клаус впервые предложил разделять платиновые металлы на две группы: лёгкие (рутений -родий-палладий) и тяжёлые (осмий-иридий-платина). Он изучал и комплексные соединения платины, в частности, аммиакаты. В 1854 г. учёный опубликовал на немецком языке монографию «Материалы к химии платиновых металлов», содержавшую богатейший справочный материал. На русском языке этот труд был издан только в 1928 г. К сожалению, у Клауса не оказалось ни учеников, ни последователей. Если бы его работы были продолжены, Россия вышла бы на передовые позиции в исследованиях по химии комплексных соединений, поскольку для этой области платина и платиноиды представляют благодатнейший объект. Только в конце XIX в., уже после создания швейцарским ученым А. Вернером координационной теории эти соединения стали изучать Н.С. Курнаков и Л.А. Чугаев.

В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований.

После того как в 70 — 80-х годах прошлого века появилась структурная теория, которая до сих пор является основой органической химии, ученые стали направленно определять структуру веществ, встречающихся в природе. Сначала это были довольно простые соединения, например, этиловый спирт, потом более сложные, как, например, аспирин, потом уже очень сложные структуры, например таксол — одно из самых перспективных современных противораковых средств.

Структурная теория органической химии — удивительная теория. Несмотря на успехи квантовой механики, несмотря на успехи в смежных физических дисциплинах, она до сих пор, как уже было сказано выше, базовая теория органической химии. Здесь уместно привести следующую убедительную цитату: «В науке нет общей теории (даже если мы будем рассматривать те из них, которые имеют строгую математическую формулировку), которая имела бы больший успех в обобщении самых разнородных фактов в простой форме, чем это приходится на долю концепций, которые мы называем структурной теорией» (Г. Льюис).

Структурная теория была дополнена стереохимией. Дело в том, что химия имеет дело с трехмерными объектами, а трехмерные объекты могут обладать хиральностью, когда предмет и его зеркальное отображение суть разные объекты.

Базовой концепцией органической химии является структурная теория, дополненная стереохимией. На основе этой фундаментальной теории химики начали устанавливать структуры природных веществ, и, что более важно, осуществлять синтез органических соединений (а в случае хиральных молекул — асимметрический синтез).

Наконец, химия породила свой собственный объект исследования: химики синтезировали громадное количество веществ, которых нет в природе. Эта творческая способность химии подобна искусству. Например, многие могут написать характеристику Анны Карениной, хотя, строго говоря, Анна Каренина на самом деле не существовала. В химии примерно то же: в природе нет многих из синтезированных химиками веществ, но, зная законы химии, мы можем их синтезировать и как бы создать параллельную природу.

Помимо чисто утилитарного значения, такие объекты отвечают и эстетическим запросам исследователя. Можно синтезировать, например, красивые гроздья циклопропанов, соединенных по пропеллерному типу. Особый, и уникально-структурный и прикладной интерес, представляют до сих пор неизвестные циклические триангуланы и, в частности, восьмиугольник или шестиугольник с шестью циклопропанами по периметру структуры. Подходы к этим соединениям мы сейчас ищем.

Таким образом, начав с установления структуры достаточно простых веществ, химики создали свой, во многом уникальный мир структур. В настоящее время из всех известных науке веществ (порядка 15 млн.) примерно 95% — соединения углерода, то есть органические вещества. Работы в области органической химии и биоорганической химии множатся быстрее, чем во всех остальных областях химии (их объем тоже растет, но существенно медленнее).

Новейший этап развития органической химии характеризуется быстрой разработкой пространственных представлений о строении вещества, стереохимических концепций. Ещё в 1874– 75 Ж. А. Ле Бель и Вант-Гофф высказали предположение, что 4 атома или радикала, связанные с атомом углерода, расположены не в одной плоскости, а в пространстве, по вершинам тетраэдра, в центре которого находится атом углерода. В связи с этим было расширено представление об изомерии , установлено несколько её видов и были заложены основы стереохимии . Для многих молекул были определены их стабильные пространственные конфигурации; в дальнейшем исследователи установили лабильные конформации молекул, возникающие в результате некоторого затруднения свободного вращения атомных групп вокруг простых связей.

Итак, объем работ в области органической химии нарастает, и интеллектуально структурная органическая химия еще долго не исчерпает себя. Однако куда идти дальше? Синтезировать еще 15 млн. веществ? Поскольку из всего этого многообразия практическое применение находят всего 10 – 30 тысяч веществ, возникает весьма принципиальный вопрос: «куда идти дальше?»

Современная теоретическая органическая химия основывается на общефизическом учении о строении материи, на достижениях квантовой теории, термодинамики и статистической физики.

Большие успехи сделала органическая химия. Так, разработаны автоматические методы синтеза многих белков; установлена структура ряда важных природных веществ – тетродотоксина, гемоглобина, аспартат-аминотрансферазы, содержащей 412 аминокислот, и др.; синтезированы сложнейшие природные соединения – хинин, витамин B12 и даже хлорофилл. Огромное влияние оказала органическая химия на развитие молекулярной биологии. Органическая химия легла в основу создания мощной индустрии тяжелого органического синтеза.

Химия полимеров, которая сформировалась в самостоятельную химическую дисциплину лишь в 30-х гг., изучает весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и превращениях, а также о свойствах тел, построенных из макромолекул. Для современного этапа химии полимеров характерно углублённое изучение механизмов каталитической полимеризации, вызываемой металлоорганическими соединениями, в частности синтеза стереорегулярных полимеров, исследование микроструктуры высокомолекулярных соединений. Установлено, что свойства полимеров зависят не только от химического состава, строения и размеров макромолекул, но и в не меньшей степени от их взаимного расположения и упаковки (надмолекулярной структуры). Важным достижением явилось создание термостойких полимеров (кремнийорганических, полиимидов и др.). Успехи химии полимеров позволили создать такие важнейшие отрасли химической промышленности как производства пластмасс, синтетического каучука, химических волокон, лакокрасочных материалов, ионитов, клеёв и др.

Успехи современной органической химии огромны. Органический синтез позволил получить довольно сложные соединения — некоторые гормоны, ферменты, витамины, красители. Еще более трудные задачи встанут перед органической химией завтра, когда химики смогут синтезировать более сложные органические соединения. Органические вещества используются практически во всех отраслях промышленности: пищевой, лакокрасочной, текстильной, фармацевтической, кожевенной и т.д. Без органической химии нельзя сегодня представить современную медицину, сельское хозяйство, машиностроение и транспорт, электропромышленность, строительство.

Список литературы

    Зефиров Н.С. О тенденциях развития современной органической химии. М.: Московский государственный университет им. М.В. Ломоносова, 2002.

    Трифонов Д. Н. Становление органической химии. Казанская химическая школа // История химии в России: краткие очерки.–М., 2001.

    Юдин Я.Ф. История органической химии / Под ред. С.Я. Вавилова. М., 2000.

    Великие учёные, внёсшие значительный вклад в развитие химии Фролова Татьяна Геннадьевна, учитель химии и биологии МОУ Ильинская СОШ Красногорский район Московская область 2011г


    Дмитрий Иванович Менделеев Родился в Тобольске в семье директора гимназии. После окончания гимназии он поступил в Главный педагогический институт в Петербурге, который окончил с золотой медалью. Будучи студентом опубликовал свои первые научные исследования. Работал старшим учителем в Симферопольской гимназии, а затем в гимназии при Ришельевском лицее в Одессе. После защиты диссертации читает лекции студентам и ведет практические занятия. 1834 - 1907 Один из величавших ученых мира и гениальных химиков 19в.


    После возвращения в Россию он был избран профессором Петербургского университета, в котором 23 года вел научную и педагогическую работу. К числу крупнейших работ Менделеева относятся: исследования в области физико – химической природы растворов, состояния газов; гидратная теория растворов(которая имеет значения и в наши дни). Он автор фундаментальных исследований по химической технологии, физике, метрологии, воздухоплаванию, сельскому хозяйству, экономике, просвещению. Особое значение придавал использованию нефти как сырья для получения разнообразных химических продуктов. Нашел общее уравнение состояния идеального газа (уравнение Клайперона- Менделеева). Принимал участие в разработке бездымного пороха. В апреле 1859г Менделеев уехал в Германию в научную командировку. В Гейдельберге исследовал капиллярные явления, познакомился с видными учеными, принял участие в Химическом конгрессе.


    Он автор первого русского учебника «Органическая химия» и книги «Основы химии» За выдающиеся заслуги в науке Д.И.Менделеев был избран почетным членом многих зарубежных академий наук и научных обществ. Он был инициатором создания Русского химического общества (ныне Российское химическое общество имени Дмитрия Ивановича Менделеева), организатором и первым директором Главной палаты мер и весов (институт назван его именем). На стене института метрологии выложена периодическая система. В 1869г открыл периодический закон и создал периодическую систему. Предсказал и описал свойства некоторых элементов. В знак признания приоритета великого русского химика Дмитрия Менделеева, элемент с порядковым номером 101 Md был назван менделеевий.


    Йенс Яков Берцелиус 1779 - 1848 Шведский химик и минералог. Изучал химию в Упсале. Составил таблицу относительных масс (относительно кислорода). Внес вклад в развитие атомного учения. Создал электрохимическую теорию химической связи и на ее основе построил классификацию элементов, соединений, минералов. Разработал систему химической символики, которая используется и в наше время. Создал первую теорию строения вещества. Открыл церий, селен, кремний, цирконий, тантал, ванадий. Опубликовал учебник в трех томах, который выдержал пять изданий.


    Джон Дальтон 1766 - 1844 Выдающийся английский химик и физик родился в бедной семье в Иглистфелде. Образование получил самостоятельно. Основоположник атомных представлений в химии. Впервые ввел понятие «атомный вес» и составил таблицу относительных атомных и молекулярных масс, приняв атомную массу водорода за единицу. Определил относительные молекулярные массы воды, аммиака, серной кислоты и др. Ввел в химию символы элементов и формулы соединений. Теоретически открыл закон кратных отношений. Выдвинул и обосновал теорию атомного строения. Открыл невосприимчивость человеком отдельных цветов «дальтонизм», которой страдал сам.


    Антуан Лоран Лавуазье 1743 - 1794 Французский химик. Родился в богатой семье, получил гуманитарное образование. Проявлял большую склонность к изучению естественных наук. Создал на свои средства лабораторию. Один из творцов научной химии, считал её экспериментальной наукой. Доказал сложность состава воздуха, воды. Правильно объяснил процессы горения, обжига металлов и дыхания участием в них кислорода. Заложил основы органического анализа и термохимии. Член Парижской Академии наук Жизнь Лавуазье закончилась трагически. Будучи сторонником конституционной монархии, он во время Великой французской революции был казнен.


    Джозеф Пристли Английский химик и философ, один из наиболее ярких ученых 18 в. Получил филологическое и богословское образование в Академии в Девентри. Сторонник Великой французской революции, за что подвергался гонениям, и поэтому эмигрировал в США. Почетный член Петербургской Академии наук. Исследования Пристли в области химии заложили основы науки о газах. Занимался изучением углекислого газа, впервые получил аммиак, хлороводород, оксид азота(1), открыл кислород. Показал, что растения «исправляют» воздух. 1733 - 1804


    Майкл Фарадей Английский химик и физик. Родился в Лондоне. Учился самостоятельно. Директор лаборатории и профессор Королевского института в Лондоне. Почетный член Петербургской Академии наук. Занимался химическим анализом известняка, исследовал сплавы железа, получил в жидком состоянии хлор, сероводород, аммиак, открыл бензол. Пионер и исследователь каталитических реакций. Открыл явления электромагнитной индукции. Обнаружил химическое действие электрического тока. Установил количественные законы электролиза. Открыл пара- и диамагнетизм. Ввел понятия электрического и магнитного полей 1791 - 1867


    Карл Вильгельм Шееле Шведский химик, член Королевской шведской АН. По образованию и профессии фармацевт. Работал в аптеках различных городов Швеции, где и проводил химические исследования. Получил хлор, глицерин, молибденовый и вольфрамовый ангидриды. Открыл фтороводород, тетрафторид кремния, окись бария, ряд кислот: винную, щавелевую, молочную, синильную и др. Обнаружил способность свежепрокалённого древесного угля поглощать газы. Исследовал минералы. В его честь назван минерал шеелит CaWO4. 1742- 1786


    Генри Кавендиш 1731 - 1810 Родился в Ницце, окончил Кембриджский университет. Занимался исследованиями в области физики, обогатил химию сведениями фундаментального значения. Установил основной состав воздуха. Сжиганием водорода получил воду, определив соотношение объемов взаимодействующих в этой реакции газов. Наблюдал, что при действии электрической искры на влажный воздух образуется азотная кислота. В области физики предвосхитил более поздние открытия. Именем Кавендиша названа физическая лаборатория в Кембриджском университете.


    Русский химик. Занимался теорией химического строения органических соединений Предсказал и объяснил изомерию ряда органических соединений: двух изомерных бутанов, трех пентанов и алифатических спиртов (вплоть до амиловых) Написал первое в истории науки руководство, основанное на теории химического строения – "Введение к полному изучению органической химии». Александр Михайлович Бутлеров 1828 -1886


    Владимир Васильевич Марковников Русский химик, работал в области органической химии. Исследовал взаимное влияние атомов в органических веществах, направления реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения (правила Марковникова) Исследовал состав нефти. Открыл новый класс органических соединений- нафтены. Внес огромный вклад в развитие химических исследований и преподавании химии в университете. Один из организаторов Русского химического общества 1837- 1904


    Выдающийся российский химик- органик, академик Петербургской академии наук, первый президент Русского физико-химического общества. Получение анилина действием водорода на нитробензол Открыл "Бензидиновую перегруппировку" (перегруппировка гидразобензола под действием кислот) Николай Николаевич Зинин 1812 -1880


    Николай Дмитриевич Зелинский Советский химик – органик, академик АН СССР (1929), один из основоположников учения об органическом катализе. Создал противогаз (совм. с А. Кумантом) Занимался вопросами гидролиз белков в автоклаве, установления их аминокислотного состава Создал крупную школу учёных, внёсших фундаментальный вклад в различные области химии. 1861 - 1953