Определить понятие митоз и мейоз сравнить процессы. Отличия митоза от мейоза


Мейоз (от греч. meiosis – уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Мейозу предшествует интерфаза, в процессе которой происходит удвоение ДНК и клетки вступают в мейоз с хромосомным набором 2n4с (n - хромосомы, с - хроматиды).

Профаза I мейоза отличается значительной продолжительностью и сложностью. Ее условно разделяют на пять последовательных стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Каждая из этих стадий обладает своими отличительными особенностями.

Лептотена (стадия тонких нитей). Для этой стадии характерно наличие тонких и длинных хромосомных нитей. Число хромосомных нитей соответствует диплоидному числу хромосом. Каждая хромосомная нить состоит из двух хроматид, соединенных общим участком - центромерой. Хроматиды очень близко сближены, и поэтому каждая хромосома кажется одиночной.

Зиготена (стадия соединения нитей). Моментом перехода лептотены в зиготену считают начало синапса. Синапс – процесс тесной конъюгации двух гомологичных хромосом. Подобная конъюгация отличается высокой точностью. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов. В других случаях синапс может начаться во внутренних участках хромосом и продолжаться по направлению к их концам. В результате каждый ген входит с соприкосновение с гомологичным ему геном той же хромосомы. Такой тесный контакт между гомологичными участками хроматид обеспечивается благодаря специализированной структуре – синаптонемальному комплексу. Синаптонемальный комплекс представляет собой длинное белковое образование, напоминающее веревочную лестницу, к противоположным сторонам которого плотно прилегают два гомолога.

Пахитена (стадия толстых нитей). Как только завершается синапс по всей длине хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. Соединение гомологов становится столь тесным, что уже трудно отличить две отдельные хромосомы. Однако это пары хромосом, которые называют бивалентами. В этой стадии происходит кроссинговер, или перекрест хромосом.

Кроссинговер (от англ. crossingover - пересечение, скрещивание) - взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы несут комбинации генов в новом сочетании. Например, ребенок родителей, один из которых имеет темные волосы и карие глаза, а другой - светловолосый и голубоглазый, может иметь карие глаза и светлые волосы.

Диплотена (стадия двойных нитей). Стадия диплотены начинается с разделения конъюгировавших хромосом. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»), и что каждая хромосома состоит из двух хроматид. Всего в биваленте структурно обособлены четыре хроматиды, поэтому бивалент называют тетрадой. В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.

Диакинез. Диплотена незаметно переходит в диакинез, завершающую стадию профазы I. На этой стадии биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена деления завершают профазу I.

Метафаза I. В метафазе I биваленты располагаются в экваториальной плоскости клетки. Нити веретена прикрепляются к центромерам гомологичных хромосом.

Анафаза I. В анафазе I к полюсам отходят не хроматиды, как при митозе, а гомологичные хромосомы из каждого бивалента. В этом принципиальное отличие мейоза от митоза. При этом расхождение гомологичных хромосом носит случайный характер.

Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление, и клетка переходит в короткую интерфазу, после которой наступает второе мейотическое деление. От обычной интерфазы эта интерфаза отличается тем, что в ней не происходит синтеза ДНК и дупликации хромосом, хотя синтез РНК, белка и других веществ может происходить.

Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

Затем наступает второе деление мейоза, сходное с обычным митозом.

Профаза II очень короткая. Она характеризуется спирализацией хромосом, исчезновением ядерной оболочки, ядрышка, формированием веретена деления.

Метафаза II. Хромосомы располагаютсяв экваториальной плоскости. Центромеры, соединяющие пары хроматид, делятся (в первый и единственный раз в течение мейоза), что свидетельствует о начале анафазы II.

В анафазе II хроматиды расходятся и быстро увлекаются нитями веретена от плоскости экватора к противоположным полюсам.

Телофаза II. Для этой стадии характерно деспирализация хромосом, образование ядер, цитокинез. В итоге из двух клеток мейоза I в телофазе II образуются четыре клетки с гаплоидным числом хромосом. Описанный процесс типичен для образования мужских половых клеток. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна яйцеклетка, а три мелких направительных (редукционных) тельца впоследствии отмирают. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таким образом, для мейоза характерно два деления: в ходе первого расходятся хромосомы, в ходе второго - хроматиды.

Разновидности мейоза. В зависимости от места в жизненном цикле организма выделяют три основных типа мейоза: зиготный, или начальный, споровый, или промежуточный, гаметный, или конечный. Зиготный тип происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет. Этот тип характерен для многих грибов и водорослей. У высших растений наблюдается споровый тип мейоза, который проходит перед цветением и приводит к образованию гаплоидного гаметофита. Позднее в гаметофите образуются гаметы. Для всех многоклеточных животных и ряда низших растений свойственен гаметный, или конечный, тип мейоза. Протекает он в половых органах и приводит к образованию гамет.

Биологическое значение мейоза заключается в том, что:

· поддерживается постоянный кариотип в ряду поколений организмов, размножающихся половым путем (после оплодотворения образуется зигота, содержащая характерный для данного вида набор хромосом).

· обеспечивается перекомбинация генетического материала как на уровне целых хромосом (новые комбинации хромосом), так и на уровне участков хромосом.

Отличия митоза от мейоза

При митозе в профазе нет конъюгации гомологичных хромосом и кроссинговера

Удвоение хромосом соответствует каждому делению клетки. В метафазе при митозе на экваторе выстраиваются хромосомы, состоящие из двух хроматид.

В анафазе при митозе к полюсам расходятся хроматиды. В телофазе дочерние клетки содержат то же число хромосом, что и материнские.

При мейозе в профазе I происходит конъюгация гомологичных хромосом, имеет место кроссинговер. Образуются биваленты хромосом.

В метафазе I при мейозе на экваторе располагаются биваленты хромосом.

При мейозе в анафазе I к полюсам расходятся хромосомы, состоящие из двух хроматид.

В телофазе I мейоза число хромосом в дочерних клетках вдвое меньше, чем в материнских.

Между I и II делениями мейоза в интерфазе нет синтеза ДНК. Мейоз осуществляется в диплоидных и полиплоидных клетках. В результате мейоза из одной клетки образуются четыре гаплоидных.

Мейоз у человека имеет место во время оогенеза и сперматогенеза.

Онтогенетический уровень организации живого

1. Способы и формы размножения

2. Периодизация онтогенеза

2.1. Этапы, периоды, стадии, типы онтогенеза

2.2. Прогенез (гаметогенез, оплодотворение)

2.3. Эмбриогенез (дробление, гаструляция, органогенез, гистогенез)

2.4. Постэмбриональный онтогенез

В иерархической системе организации живого онтогенетический уровень тесно связан с другими уровнями. Элементарной единицей жизни здесь является особь , в процессе ее индивидуального развития. Реально существующие в природе организмы на протяжении жизни непосредственно взаимодействуют с окружающей средой - неживой природой, особями своего и других видов. В этом проявляется взаимосвязь онтогенетического, популяционно-видового, биогеоценотического и биосферного уровней, в которые так или иначе включены отдельные организмы. В процессе взаимодействия особей с окружающей средой осуществляется отбор организмов, наиболее приспособленных в силу их наследуемых свойств. Основной задачей, решаемой на онтогенетическом уровне, является формирование организма, способного произвести потомство, передав ему наследственную программу, на основе которой у нового поколения формируются характерные черты данного вида. При половом размножении эта задача решается не единичной особью, а в рамках популяции организмов данного вида, в которой находятся особи обоих полов.

Онтогенез – процесс индивидуального развития особи, то есть вся совокупность преобразований с момента образования зиготы до прекращения существования организма (смерть или новое деление особи).

Установив непосредственную связь онтогенетического уровня с надорганизменными уровнями организации жизни, нужно отметить, что для осуществления основной задачи - оставления потомства и обеспечения непрерывности существования вида - необходимо обеспечить формирование зрелого в репродуктивном отношении организма и его жизнеспособность на всех стадиях онтогенеза. Это достигается благодаря функционированию элементарных единиц суборганизменных уровней организации - молекулярно-генетического и клеточного.

Митоз (наряду со стадией цитокинеза) - процесс, в результате которого эукариотическая соматическая (или клетка тела) делится на две идентичные .

Мейоз - другой тип деления клеток, который начинается с одной клетки, имеющей правильное количество хромосом и заканчивается образованием четырех клеток с уменьшенным в двое количеством хромосом ().

У людей практически все клетки подвергаются митозу. Единственными клетками человека, которые делятся при помощи мейоза, являются или (яйцеклетка у женщин и сперма у мужчин).

Гаметы имеют только половину относительно клеток тела, потому что когда половые клетки сливаются во время оплодотворения, результирующая клетка (называемая зиготой) имеет правильное количество хромосом. Вот почему потомство представляет собой смесь генетики матери и отца (гаметы отца содержат одну половину хромосом, а гаметы матери - другую).

Хотя митоз и мейоз дают очень разные результаты, эти процессы довольно схожи и протекают с небольшими различиями на основных этапах. Давайте разберем основные отличия митоза и мейоза, чтобы лучше понять, как они работают.

Оба процесса начинаются после того, как клетка проходит через интерфазу и синтезирует ДНК на стадии S-фазы (или фазы синтеза). В этот момент каждая хромосома состоит из сестринских хроматид, которые удерживаются вместе .

Митотическая анафаза отделяет одинаковые сестринские хроматиды, поэтому идентичная генетика будет в каждой клетке. В анафазе I сестринские хроматиды, не идентичны, так как подверглись переходу во время профазы I. В анафазе I сестринские хроматиды остаются вместе, но гомологичные пары хромосом раздвигаются и переносятся на противоположные полюса клетки.

Телофаза

Заключительный этап называется телофазой. В митотической телофазе и телофазе II большая часть того, что было сделано во время профазы, будет отменено. Веретено деление разрушается и исчезает, образовывается ядерная оболочка, хромосомы распутываться, а клетка готовится к разделению во время цитокинеза.

В этот момент митотическая телофаза переходит в цитокинез, результатом которого будут две идентичные диплоидные клетки. Телофаза II уже прошла одно деление в конце мейоза I, поэтому она войдет в цитокинез, чтобы сделать в общей сложности четыре гаплоидных клетки. В телофазе I подобные события наблюдаться в зависимости от типа клетки. Веретено разрушается, но новая ядерная оболочка не формируется, а хромосомы могут оставаться плотно спутанными. Кроме того, некоторые клетки переходят сразу в профазу II вместо разделения на две клетки посредством цитокинеза.

Таблица основных различий между митозом и мейозом

Сравниваемые характеристики Митоз Мейоз
Деление клеток Соматическая клетка делится один раз. Цитокинез (разделение ) происходит в конце телофазы. Половая клетка, как правило делится дважды. Цитокинез происходит в конце телофазы I и телофазы II.
Дочерние клетки Производится две дочерние диплоидные клетки, содержащие полный набор хромосом. Производится четыре . Каждая клетка представляет собой гаплоид, содержащий половину числа хромосом от родительской клетки.
Генетическая композиция Полученные в митозе дочерние клетки являются генетическими клонами (они генетически идентичны). Не происходит рекомбинации или перекрестка. Полученные в мейозе дочерние клетки содержат различные комбинации генов. Генетическая рекомбинация происходит в результате случайной сегрегации гомологичных хромосом в разные клетки и путем перехода (переноса генов между гомологичными хромосомами).
Длительность профазы Во время первой митотической стадии, известной как профаза, конденсируется в дискретные хромосомы, ядерная оболочка ломается, а волокна веретена деления формируются на противоположных полюсах клетки. Клетка проводит меньше времени в профазе митоза, чем клетка в профазе I мейоза. Профаза I состоит из пяти этапов и длится дольше, чем профаза митоза. Этапы мейотической профазы I включают: лептотен, зиготен, пахитен, диплотен и диакинез. Эти пять стадий не происходят при митозе. Генетическая рекомбинация и скрещивание происходят во время профазы I.
Образование тетрада (бивалента) Тетрада не образовывается. В профазе I пары гомологичных хромосом выстраиваются близко друг к другу, образуя так называемую тетраду, которая состоит из четырех хроматид (два набора сестринских хроматид).
Согласование хромосом в метафазе Сестринские хроматиды (дублированная хромосома, состоящая из двух идентичных хромосом, соединенных в области центромера) выровнены на метафазной пластине (плоскость, которая одинаково удалена от двух полюсов клетки). Тетрада гомологичных хромосом выравнивается на метафазной пластинке в метафазе I.
Разделение хромосом Во время анафазы сестринские хроматиды разделяются и начинают мигрировать к противоположным полюсам клетки. Отделяемая сестринская хроматида становится полной хромосомой дочерней клетки. Гомологичные хромосомы мигрируют к противоположным полюсам клетки во время анафазы I. Сестринские хроматиды не разделяются в анафазе I.

Митоз и мейоз в эволюции

Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.

Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных индивидуумов.

Все живое имеет клеточное строение. Клетки живут: растут, развиваются и делятся. Их деление может происходить различными способами: в процессе митоза или мейоза. Оба этих способа имеют одинаковые фазы деления, предваряя эти процессы, происходят спирализация хромосом и самостоятельное удвоение в них молекул ДНК. Рассмотрим, в чем заключается отличие митоза от мейоза.

Митоз является универсальным способом непрямого деления клеток, имеющих ядро, то есть клеток животных, растений, грибов. Слово «митоз» произошло от греческого «митос», что означает «нить». Его еще называют вегетативным способом размножения или клонированием.

Мейоз – это также способ деления аналогичных клеток, но число хромосом в ходе мейоза уменьшается в два раза. Основой происхождения названия «мейоз» стало греческое слово «меёсис», то есть «уменьшение».

Процесс деления при митозе и мейозе

В процессе митоза каждая хромосома расщепляется на две дочерние и распределяется по двум вновь образовавшимся клеткам. Жизнь образовавшихся клеток может развиваться по-разному: обе могут продолжать деление, делится дальше только одна клетка, в то время, как другая теряет такую способность, обе клетки утрачивают способность делиться.

Мейоз состоит из двух делений. В первом делении число хромосом становится меньше в два раза, из диплоидной клетки получаются две гаплоидные, при этом в каждой хромосоме имеется по две хроматиды. Во втором делении число хромосом не уменьшается, лишь образуется четыре клетки с хромосомами, которые содержат по одной хроматиде.

Конъюгация

В процессе мейоза в первом делении происходит слияние гомологичных хромосом, при митозе любые виды спаривания отсутствуют.

Выстраивание

В процессе митоза удвоенные хромосомы выстраиваются по экватору по раздельности, в то время как при мейозе аналогичное выстраивание происходит парами.

Итог процесса деления

В результате митоза происходит образование двух соматических диплоидных клеток. Важнейшим аспектом этого процесса является то, что наследственные факторы в ходе деления не изменяются.

Итогом мейоза является появление четырех половых гаплоидных клеток, наследственность которых изменена.

Размножение

Мейоз происходит в созревающих половых клетках и является основой полового размножения.

Митоз является основой бесполого размножения соматических клеток, причем это единственный способ их самовосстановления.

Биологическое значение

В процессе мейоза поддерживается постоянное число хромосом и кроме того происходит появление новых соединений наследственных задатков в хромосомах.

При митозе происходит удвоение хромосом в ходе их продольного расщепления, которые равномерно распределяются по дочерним клеткам. Объем и качество исходной информации не меняется, и сохраняется в полной мере.

Митоз является основой индивидуального развития всех многоклеточных организмов.

Выводы сайт

  1. Митоз и мейоз – это способы деления клеток, содержащих в своем составе ядро.
  2. Митоз происходит в соматических клетках, мейоз – в половых.
  3. При митозе происходит одно деление клетки, мейоз предполагает деление в две стадии.
  4. В результате мейоза происходит уменьшение числа хромосом в 2 раза, в процессе митоза – сохранение исходного числа хромосом в дочерних клетках.


Чем стадии мейоза отличаются от стадий митоза?

Основные отличия перечислены на схеме ниже. Но в действительности их намного больше. В мейозе два стадии - мейоз 1 и мейоз 2. В мейозе по-другому изменяется набор хромосом и молекул ДНК внутри стадий. Мейоз 2 похож на митоз в анафазе 2.

Рисунок 1. Отличия митоза от мейоза

Зачем существует профаза 1 мейоза 1? Какие ей можно дать метафоры?

Смысл существования профазы 1 - разнообразие жизни на Земле, так как в ней идет кроссинговер. Более того, любая профаза (митоза и мейоза) - это великий разрушитель и созидатель одновременно. Как разрушитель она выступает при растворении ядерной оболочки и ядрышка. Как созидатель - при создании видимых двухроматидных хромосом. Созидательная сила профазы проявляется также в разросшихся микротрубочках веретена деления и в отчетливом появлении двух полюсов деления клетки.

Что такое хроматиды? Чем они отличаются от хромосом?

В конце профазы конденсация хромосом завершается. Хромосомы утолщены, отделены от ядерной мембраны. В профазе становятся видны хромосомы, состоящие из двух хроматид. Представьте, что пара рук человека - это одна хромосома. В профазе мы четко видим, что одна хромосома состоит из двух частей - двух хроматид, точно также как человек имеет две руки, правую и левую.

Что представляют собой гомологичные хромосомы в профазе?

Гомологичные хромосомы, образно говоря - это муж и жена или мужчина и женщина. Почему? Во-первых, они парные, то есть находятся рядом друг с другом. Во-вторых, они достаются организму от разных родителей, всегда разнополых. В-третьих, в этой паре хромосом содержатся два аллеля. Они отвечают за альтернативные проявления одного гена. Например, есть ген цвета волос, и он представлен двумя аллелями: светлых волос и темных волос. Хромосомы в профазе - это гении общения. Они действительно «общаются», обмениваясь участками, в которых расположены определенные аллели. Следовательно, идет обмен аллелями генов.

Что такое бивалент, тетрада?

Как вы знаете, семья состоит минимум из двух человек. Представьте, что пара рук мужчины - это одна гомологичная хромосома, пара рук женщины - вторая. Если мужчина и женщина соединят свои руки, получится метафора двух хромосом в профазе 1. Аналогично образуется бивалент. Две гомологичные хромосомы сближаются в профазе 1 для кроссинговера. Бивалент - это две объединенные в профазе 1 мейоза 1 гомологичные хромосомы. Так как в двух гомологичных хромосомах всего имеются 4 хроматиды, бивалент еще называют тетрадой.

Рисунок 2


Какова метафора кроссинговера?

Представим себе, что встретились два человека, словно две хромосомы. Допустим, данных людей сближает то, что они художники, профессионалы в одной области. Так и две хромосомы одинаковы в том, что они гомологичные - достались нам одна от отца, другая от матери, имеют взаимно параллельные участки и аллельные гены. У гипотетических художников цель общения - обмен опытом, идеями в изобразительном искусстве. Цель «общения» хромосом - обмен аллелями одного гена. Данные аллели (аллельные гены) близки тем, что они представляют один ген и отвечают за его альтернативные проявления. Например, рассмотрим ген цвета глаз. В каждой из гомологичных хромосом могут находиться по одному аллелю данного гена. Один аллель отвечает за карий цвет глаз, другой - за голубой.

После обмена идеями приобретут ли два художника новую профессию, например, инженера? Почему кроссинговер не образует новые аллели генов?

Вряд ли два наших художника изменят своему призванию. Так и гомологичные хромосомы после обмена не получат друг от друга абсолютно новых аллелей, например, аллель фиолетовых глаз. Они просто обменяются тем, что имеют. Если в одной хромосоме был аллель голубых глаз, она его передаст другой при кроссинговере. Гомологичная ей хромосома передаст свой ген карих глаз. В этом суть обмена. Сразу скажу, что совершенно новые аллели генов образуются в результате генных мутаций.

Рисунок 3. Отличия кроссинговера "до" и "после"