Роль гормонов в организме человека. Функции гормонов в организме, главные эндокринные органы

На сегодняшний день известно более ста пятидесяти видов гормонов, каждый из которых чрезвычайно важен для нормального функционирования организма: если выработка хотя бы одного из них отклонится от нормы, это приведет к очень серьезным проблемам со здоровьем, вплоть до смерти. Происходит это потому, что функции гормонов прежде всего состоят в том, чтобы контролировать метаболизм, развитие, рост тканей, клеток и другие процессы жизнедеятельности организма.

Биологически активные вещества, известные под названием гормоны, производятся . Органами внутренней секреции называют железы, что выводят активные вещества прямо в кровь и не имеют наружу выводных протоков. К ним относят гипофиз, надпочечники, щитовидную железу, .

Железы смешанной секреции отвечают за выделение не только гормонов, но и других веществ, а потому выводят производимые ими вещества как в кровь, так и в другую часть организма или наружу. К ним относят поджелудочную железу, половые железы, желудок, вилочковую железу, плаценту, которые не только отвечают за производство гормонов, но и исполняют другие функции, не связанные с работой .

Биологически активные вещества выполняют в организме следующие функции:

  • активизируют или угнетают рост клеток;
  • контролируют естественный процесс распада клетки;
  • оказывают влияние на настроение (апатия, бодрость, оптимизм, депрессия);
  • регулируют обмен веществ;
  • улучшают или угнетают работу иммунной системы;
  • отвечают за репродуктивную функцию: участвуют в формировании вторичных половых признаков, слаженной работы половых органов, подготавливают организм в , готовят к менопаузе, влияют на половое влечение;
  • отвечают за своевременную реакцию в стрессовых и опасных для жизни ситуациях;
  • вызывают чувство голода и насыщения;
  • влияют на синтез и функции других гормонов.

С организмом гормоны взаимодействуют через специально предназначенные для них рецепторы, что находятся на каждой клетки-мишени. Нужного эффекта они добиваются путем изменения скорости химических реакций, что происходят под влиянием или синтеза ферментов (так обычно называют белковые молекулы). Причем влияние это настолько велико, что гормон, проникнув в клетку-мишень, изменяет не более одного процента белков и РНК, что оказывается достаточным для создания нужного действия.

Виды гормонов

Работа эндокринной системы полностью находится под воздействием центральной нервной системы, которая непосредственно связана с гипоталамусом, который и руководит работой желез внутренней и смешанной секреции. Делает он это через гипофиз, который являет собой эндокринную железу, что расположена в кармане клиновидной части черепа, известным под названием турецкое седло.

Гормоны, на активность которых влияет гипоталамус, по химическому строению делятся на три группы. К первой, к которой принадлежат и биологически активные вещества, что синтезирует гипоталамус, относятся пептиды и белки. Также они производятся в передней доли гипофиза, в гипоталамусе, в поджелудочной железе (инсулин, глюкагон).


Ко второй группе относят производные аминокислот, являющиеся производными тирозина. Самыми известными из них являются гормоны щитовидной железы, а также , которые производятся в мозговом веществе надпочечников. Третья группа – стероидные гормоны, вырабатываются из холестерина. Их производят половые железы и кора надпочечников.

Каждый вид гормонов влияет лишь на определенные клетки или вид метаболизма. При этом нередко бывает так, что одна и та же ткань подвергается влиянию сразу нескольких типов гормонов, которые могут как обладать противоположным действием, так и создавать благоприятную среду для работы другого гормона.

Например, вещества, что синтезирует щитовидная железа, взаимодействуют с андрогенами и эстрогенами, улучшая функционирование репродуктивной системы. Поэтому окончательный результат зависит не от одного, а от всех видов гормонов, под воздействием которых оказалась клетка, а также от состояния работы внутренних органов, возраста.


Для большинства биологически активных веществ характерно то, что они являются водорастворимыми, не связываются с белками-переносчиками (исключение – половые гормоны, гормоны щитовидной железы и некоторые другие).

Также многие из них начинают влиять на организм лишь после соединения с ориентированными на них рецепторами, которые могут располагаться как в ядре клетки, так и на её поверхности.

Ещё одной особенностью гормонов является то, что уровень биологически активных веществ постоянно колеблется, и зависит не только от возраста, но и времени суток, у женщин – месячного цикла.

Функции гипоталамуса

Биологически активные вещества, что производит гипоталамус, являются нейрогормонами: этот отдел головного мозга помимо того, что регулирует работу эндокринной системы, но и тесно связан с ЦНС. Когда внешние или внутренние раздражители воздействуют на те или иные рецепторы, сигналы об этом сразу поступают в центрально нервную систему, их улавливает гипоталамус, и реагирует выработкой тех или иных нейрогормонов.

Одни из них предназначены для стимуляции синтеза гормонов передней части гипофиза, известны под названием рилизинг-гормоны. Другие исполняют противоположную функцию: когда гипоталамус получает сигнал о необходимости уменьшить синтез гормонов гипофиза, он начинает производить статины, которые тормозят их производство.

Третью группу биологически активных веществ, что вырабатывает гипоталамус, называют гормонами задней доли гипофиза. К ним относят . Первый регулирует вывод воды почками, второй влияет на сексуальное поведение человека, способствует сокращению матки при родах, выводит из груди молоко, которое формируется под воздействием пролактина, гормона гипофиза.

Окситоцин и вазопрессин поступают в заднюю часть гипофиза, где пребывают некоторое время. Когда их накапливается определенное количество, выходят в кровь и начинают выполнять свои функции, регулируя выработку гормонов подконтрольными гипоталамусу органами.

Так, схема работы гипоталамуса выглядит следующим образом. Под влиянием различных процессов, что происходят внутри организма или во внешней среде, гипоталамус увеличивает выработку гормонов, которые поступив в гипофиз, стимулируют производство тех или иных биологически активных веществ.

Те, в свою очередь, отправляются к железам, чью работу предназначены контролировать и, стимулируя их, увеличивают синтез гормонов, что после выброса в кровь отправляются к органам-мишеням, связываются с предназначенными для них рецепторами, проникают в клетку, вызывая нужные реакции.

Подобный процесс происходит при необходимости уменьшить выработку гормонов. После того как гипоталамус снижает синтез нейрогормонов, они перестают стимулировать клетки-мишени, что приводит к снижению активности подконтрольных ему желез.

Работа гипофиза

Центральным органом эндокринной системы является гипофиз. Именно через него гипоталамус воздействует на железы внутренней и смешанной секреции. Какое именно влияние оказывают на их работу, можно отследить по следующей таблице:

Гормон гипофиза Воздействие
Тиреотропный (ТТГ) Контролирует работу щитовидной железы, влияя на её рецепторы, и в зависимости от ситуации уменьшая/увеличивая производство вырабатываемых щитовидной железой трийодтиронина и тироксина.
Адренокортикотропный (АКТГ) Взаимодействует с корой надпочечников, влияя прежде всего на выработку кортизола, кортизона, кортикостерона. Вместе с ними одновременно повышается производство надпочечниками андрогенов и эстрогенов.
Соматропный Непосредственно влияет на развитие и линейный рост человека, обновление клеток, их развитие, ускоряет синтез белков, способствует распаду жиров, образованию глюкозы.
Пролактин Активизируется во время беременности, подготавливая молочные железы к лактации, способствует образованию молока после родов.

Также гормоны гипофиза отвечают за репродуктивную функцию человека. У женщин под влиянием фолликулостимулирующего гормона начинается первый этап месячного цикла. ФСГ способствует созреванию яйцеклетки в фолликуле, увеличивает количество эстрогенов и начинает подготавливать организм к беременности.

Во второй половине цикла на первый план выступает лютеинизирующий гормон (ЛГ). Когда его значение одновременно с ФСГ достигает максимальных значений, это вызывает овуляцию (выход яйцеклетки из фолликула). Затем под его влиянием образовывается желтое тело, которое начинает производить прогестерон, и продолжает готовить организм к зачатию.

В мужском организме ФСГ и ЛГ регулируют . ФСГ влияет на клетки Сертоли, в результате чего они вырабатывают андрогеносвязывающие белки, которые переносят тестостерон к герминогенным клеткам. Также он влияет на выработку пептидов, которые увеличивают чувствительность рецепторов клеток Лейдинга к лютеинизирующему гормону, что активизирует выработку тестостерона. Что касается ЛГ, то он стимулирует синтез мужского гормона ответственными за это клетками.

Основные гормоны

Самой крупной эндокринной железой является щитовидка: её длина у взрослого человека составляет от 2,5 до 3 см. Находится щитовидная железа в нижней части шеи и синтезирует йодсодержащие (тиреоидные) гормоны и кальцитонин.

Вещества, что производит щитовидная железа, принимают участие во всех процессах жизнедеятельности организма: от их правильной работы зависит развитие, рост, физическое, умственное состояние человека. При недостатке гормонов щитовидной железы ухудшается интеллект, если ребенок родился с патологией – при несвоевременно предпринятой терапии у него разовьется кретинизм или слабоумие.

Большое количество разного типа гормонов . Большинство производимых ими веществ отвечают за своевременную реакцию организма на стрессовые и опасные для жизни ситуации. Активизировавшись, гормоны воздействуют на организм таким образом, что у него появляются дополнительные силы для решения сложных ситуаций: сужаются сосуды, повышается давление, ускоряется ритм сердца, увеличивается уровень глюкозы, из которой организм извлекает энергию.

В мозговом слое надпочечников производятся адреналин и норадреналин, позволяющие во время опасности быстро принять решение и преодолеть преграды, которые человек в обычном состоянии взять не по силам. Корковое вещество надпочечников производит гормоны стресса глюкокортикоиды, которые больше активизируются при стрессовых, но менее опасных ситуациях. Здесь же производятся половые гормоны, которые отвечают за формирование вторичных половых признаков, подготавливая организм к репродуктивному возрасту.

От исправной работы поджелудочной железы зависит концентрация глюкозы в крови. Бета-клетки органа, известные как островки Лангерганса, производит инсулин. Как только количество глюкозы начинает превышать норму, его выработка активизируется, и он снижает сахар, в противном случае развивается сахарный диабет. Здесь же вырабатывается гормон, который снижает кислотность желудочного сока после того, как пища выходит из желудка в кишечник.

Огромное значение в развитии организма играют гормоны, производимые половыми железами – андрогены и эстрогены. Они отвечают за репродуктивную функцию человека, поэтому от них во многом зависит не только способность человека к зачатию, но и характер, поведение, внешность. Если половые железы производят их в недостаточном количестве или в избытке, это чревато бесплодием, снижением либидо, отсутствием сексуального влечения и другими проблемами.

От чего зависит работа гормонов

Насколько слажено эндокринные железы будут производить гормоны, взаимодействовать друг с другом и оказывать влияние на работу организма, зависит от многих причин. Прежде всего, от состояния здоровья органов, которые их производят, а также на регулирование работу которых направлено действие гормонов.

Негативное влияние на работу желез внутренней секреции оказывает алкоголь и курение. Они отравляют организм, что негативно воздействует на здоровье человека, и опасно для репродуктивной функции: у детей алкоголиков нередко фиксируются пороки развития, тяжелые недуги, слабоумие.

Чтобы организм работал правильно и слажено, необходимо следить за своим здоровьем. Если результаты анализов показали отклонения биологически активных веществ от нормы, нужно определить причину. Например, нехватка или избыток андрогенов, эстрогенов, гормонов щитовидной железы часто является причиной бесплодия. Заболевания поджелудочной железы могут стать причиной диабета, полностью избавиться во многих случаях невозможно, особенно при инсулинозависимой форме.

Уровень гормонов всегда изменяется при развитии аденомы, доброкачественной опухоли, которая начинает дополнительно синтезировать биологически активные вещества. Злокачественные опухоли, в зависимости от вида раковых клеток, могут повышать или понижать выработку гормонов. В этом случае лечение надо начинать незамедлительно.

Как известно, гормоны играют ведущую роль во всех процессах, которые происходят в нашем организме. Поэтому обратим внимание, какие гормоны отвечают за определенные процессы, происходящие в нашем организме, чтобы полностью осознать их роль в нашей жизни.

Что такое гормоны

Гормоны – это биологически активные сигнальные химические вещества, которые выделяются эндокринными железами непосредственно в организме и оказывают дистанционное сложное и многогранное воздействие на организм в целом либо на определенные его органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определенных процессов в различных органах и системах. Гормоны используются в организме для поддержания гомеостаза и для регуляции многих функций, таких как рост, развитие, обмен веществ, реакцию на изменения условий окружающей среды. Стоит также отметить, что гормоны не только руководят всеми процессами, которые происходят в нашем организме, они отвечают даже за наше поведение. Помимо этого, наши чувства, такие как любовь, желание близости, привязанность, альтруизм, самопожертвование, романтика, также полностью зависят от гормонов.

Гормоны и их предназначение

Эстрогены – гормоны из подкласса стероидных гормонов, которые производятся в основном фолликулярным аппаратом яичников у женщин. В небольших количествах эстрогены производятся яичками у мужчин и корой надпочечников у обоих полов. Эстрогены вырабатываются у женщин яичниками с начала полового созревания и до наступления климакса. Эстроген ускоряет обновление клеток, защищает сосуды от холестериновых отложений, увеличивает плотность кожи, способствует ее увлажнению, регулирует деятельность сальных желез.

Кроме всего прочего, он поддерживает прочность костей и стимулирует образование новой костной ткани. Избыток эстрогена в организме часто оборачивается полнотой бедер и нижней части живота, а также провоцирует развитие миомы матки; его недостаток приводит к усиленному росту волос на руках, ногах, лице, а также к быстрому старению. Прогестерон – гормон желтого тела яичников, по химическому строению он является стероидным гормоном. Прогестерон в значительных количествах производится яичниками, он также является предшественником целого ряда нейростероидов в головном мозге. Большое количество прогестерона во время беременности производит плацента плода, количество производимого плацентой прогестерона прогрессивно увеличивается от I к III триместру беременности, затем резко падает за несколько дней до родов. Прогестерон, подготавливая матку к беременности, действует так, что она постоянно находится в состоянии покоя.

Кроме этого, прогестерон способен уменьшать чувство голода и жажды, а также влиять на эмоциональное состояние. Тестостерон является основным мужским половым гормоном, андрогеном. Секретируется клетками семенников у мужчин и в небольших количествах яичниками у женщин, а также у обоих полов корой надпочечников. Тестостерон биологически малоактивен и слабо связывается с андрогенными рецепторами. Тестостерон заставляет испытывать сексуальное влечение, к тому же чем больше у женщины тестостерона, тем быстрее она наращивает мускулатуру, но при избытке тестостерона характер становится более агрессивным, а на коже могут появляться угри. Окситоцин вырабатывается надпочечниками и в большом количестве поступает в кровь после родов. Он способствует сокращению матки, а также возникновению проявления привязанности матери к ребенку. Инсулин является гормоном пептидной природы, оказывает многогранное влияние на обмен практически во всех тканях.

Основное действие инсулина заключается в снижении концентрации глюкозы в крови, он увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Если инсулина производится меньше, чем необходимо, тогда в организме остается лишняя глюкоза и развивается сахарный диабет. Конечно же, в организме человека огромное количество самых разных гормонов, которые отвечают за те или иные функции, но даже на этих нескольких примерах становиться ясно, насколько они важны для нас и какой урон для здоровья может причинить гормональный дисбаланс.

Под словом «гормоны» сегодня понимают несколько групп биологически активных веществ. Прежде всего это химические вещества, которые образуются в особых клетках и оказывают мощное влияние на все процессы развития живого организма. У человека большинство таких веществ синтезируется в железах внутренней секреции и разносится с кровью по всему организму. Есть свои гормоны и у беспозвоночных животных, и даже у растений. Отдельная группа – это медицинские препараты, которые делают на основе таких веществ или имеющих похожее действие.

Что такое гормоны

Гормоны – это вещества, которые синтезируются (преимущественно) в эндокринных железах. Они выбрасываются в кровь, где связываются с особыми клетками-мишенями, проникают во все органы и ткани нашего организма и оттуда регулируют всевозможные обменные процессы и физиологические функции. Некоторые гормоны синтезируются также в железах наружной секреции. Это гормоны почек, предстательной железы, желудка, кишечника и др.

Ученые заинтересовались этими необычными веществами и их влиянием на организм еще в конце XIX века, когда британский доктор Томас Аддисон описал симптомы странной болезни, вызванной . Самые яркие симптомы такого недуга – пищевые расстройства, вечное раздражение и озлобленность и темные пятна на коже – гиперпигментация. Болезнь позже получила имя своего «первооткрывателя», но сам термин «гормон» появился лишь в 1905 году.

Схема действия гормонов достаточно проста. Сначала появляется внешний или внутренний раздражитель, который действует на конкретный рецептор в нашем организме. Нервная система сразу реагирует на это, отправляет сигнал в гипоталамус, а тот отдает команду гипофизу. Гипофиз начинает выделять тропные гормоны и посылает их в разные эндокринные железы, те в свою очередь вырабатывают свои собственные гормоны. Потом эти вещества выбрасываются в кровь, сцепляются с некоторыми клетками и вызывают в организме определенные реакции.

Гормоны человека отвечают за следующие процессы:

  • контроль нашего настроения и эмоций;
  • стимуляция или притормаживание роста;
  • обеспечение апоптоза (естественный процесс гибели клеток, своеобразный естественный отбор);
  • смена жизненных циклов (половое созревание, роды, менопауза);
  • регулирование работы иммунной системы;
  • половое влечение;
  • репродуктивная функция;
  • регуляция метаболизма и др.

Виды классификаций гормонов

Современной науке известно более 100 гормонов, их химическая природа и механизм действия изучены достаточно подробно. Но, несмотря на это, общая номенклатура этих биологически активных веществ до сих пор не появилась.

Сегодня существует 4 основных типологии гормонов: по конкретной железе, где они синтезируются, по биологическим функциям, а также функциональная и химическая классификация гормонов.

1. По железе, которая продуцирует гормональные вещества:

  • гормоны надпочечников;
  • щитовидной железы;
  • паращитовидной желез;
  • гипофиза;
  • поджелудочной железы;
  • половых желез и др.

2. По химическому строению:

  • стероиды (кортикостероиды и половые гормональные вещества);
  • производные жирных кислот (простагландины);
  • производные аминокислот (адреналин и норадреналин, мелатонин, гистамин и др.);
  • белково-пептидные гормоны.

Белково-пептидные вещества подразделяются на простые белки (инсулин, пролактин и др.), сложные белки (тиреотропин, лютропин и др.), а также полипептиды (окситоцин, вазопрессин, пептидные желудочно-кишечные гормоны и др.).

3. По биологическим функциям:

  • обмен углеводов, жиров, аминокислот (кортизол, инсулин, адреналин и др.);
  • обмен кальция и фосфатов (кальцитриол, кальцитонин)
  • контроль водно-солевого обмена (альдостерон и др.);
  • синтез и продуцирование гормонов внутрисекреторных желез (гормоны гипоталамуса и тропные гормоны гипофиза);
  • обеспечение и контроль репродуктивной функции (тестостерон, эстрадиол);
  • изменение метаболизма в клетках, где образуется гормон (гистамин, гастрин, секретин, соматостатин и др.).

4. Функциональная классификация гормональных веществ:

  • эффекторные (действуют прицельно на орган-мишень);
  • тропные гормоны гипофиза (контролируют выработку эффекторных веществ);
  • рилизинг-гормоны гипоталамуса (их задача — синтез гипофизарных гормонов, в основном тропных).

Таблица гормонов

Каждый гормон имеет несколько названий – полное химическое наименование указывает на его структуру, а короткое рабочее имя может говорить об источнике, где синтезируется вещество, или о его функции. Полные и общеизвестные названия веществ, их место синтеза и механизм действия указаны в следующей таблице.

Название Место синтеза Физиологическая роль
мелатонин (N-ацетил-5-метокситриптамин) Регуляция сна
энтерохромаффинные клетки Регуляция чувствительности болевой системы, «гормон счастья»
тироксин Активация процессов метаболизма
трийодтиронин щитовидная железа Стимулирование роста и развития организма
мозговой слой надпочечников Мобилизация организма для устранения угрозы
норадреналин (норэпинефрин) мозговой слой надпочечников
клетки Сертоли
адипонектин жировая ткань
передняя доля гипофиза
ангиотензин, ангиотензиноген печень
антидиуретический гормон (вазопрессин) Снижение кровяного давления(путём сужения сосудов), снижение количества мочи путём снижения её концентрации
предсердный натрийуретический пептид Секреторные кардиомиоциты правого предсердия сердца
глюкозозависимый инсулинотропный полипептид K-клетки двенадцатиперстной и тощей кишок
кальцитонин щитовидная железа Снижение количества кальция в крови
гипоталамус
холецистокинин (панкреозимин) I-клетки двенадцатиперстной и тощей кишок
эритропоэтин почки
фолликулостимулирующий гормон передняя доля гипофиза
гастрин G-клетки желудка
грелин (гормон голода) Эпсилон-клетки панкреатических островков, гипоталамус
альфа-клетки панкреатических островков Стимулирует в печени превращение гликогена в глюкозу(регулирует таким образом количество глюкозы)
гонадотропин-высвобождающий гормон (люлиберин) гипоталамус
передняя доля гипофиза
плацента
плацентарный лактоген плацента
ингибин
бета-клетки панкреатических островков Стимулирует в печени превращение глюкозы в гликоген(регулирует таким образом количество глюкозы)
инсулиноподобный фактор роста (соматомедин)
жировая ткань
лютеинизирующий гормон передняя доля гипофиза
меланоцитстимулирующий гормон передняя доля гипофиза
нейропептид Y
окситоцин гипоталамус (накапливается в задней доле гипофиза) Стимулирует лактацию и сокращающие движения матки
панкреатический полипептид PP-клетки панкреатических островков
паратиреоидный гормон (паратгормон) паращитовидная железа
передняя доля гипофиза
релаксин
секретин S-клетки слизистой оболочки тонкой кишки
соматостатин дельта-клетки панкреатических островков, гипоталамус
тромбопоэтин печень, почки
тироид-стимулирующий гормон передняя доля гипофиза
тиреолиберин гипоталамус
альдостерон кора надпочечников
яички Регулирует развитие мужских половых признаков
дегидроэпиандростерон кора надпочечников
андростендиол яичники, яички
дигидротестостерон множественное
эстрадиол фолликулярный аппарат яичников, яички
жёлтое тело яичников Регуляция менструального цикла у женщин, обеспечение секреторных изменений в эндометрии матки во время второй половины месячного женского полового цикла
кальцитриол почки
простагландины семенная жидкость
лейкотриены белые кровяные клетки
простациклин эндотелий
тромбоксан тромбоциты

Синтетические гормоны

Уникальное действие гормонов на организм человека, их способность регулировать процессы роста, обмена веществ, полового созреваний, влиять на зачатие и вынашивание ребенка подтолкнула ученых к созданию гормонов синтетических. Сегодня такие вещества используются в основном для разработки медицинских препаратов.

Синтетические гормоны могут содержать вещества следующих групп.

  • Экстракты гормонов, полученные из внутрисекреторных желез забойного домашнего скота.
  • Искусственные (синтетические) вещества, которые идентичны по структуре и функциям обычным гормонам.
  • Химические синтетические соединения, которые по строению сильно приближены к гормонам человеческим и оказывают явное гормональное действие.
  • Фитогормоны – растительные препараты, которые проявляют гормональную активность при попадании в организм.

Также все подобные лекарства разделяются на несколько типов в зависимости от происхождения и лечебного назначения. Это препараты гормонов щитовидки и поджелудочной железы, надпочечников, половых гормонов и т.д.

Гормональная терапия бывает нескольких видов: заместительная, стимулирующая и блокирующая. Заместительная терапия предполагает прием курса гормонов, если организм по какой-то причине не синтезирует их сам. Стимулирующая терапия призвана активизировать процессы жизнедеятельности, за которые обычно отвечают гормоны, а блокирующая используется для подавления гиперфункции эндокринных желез.

Также препараты могут использоваться для лечения болезней, которые не вызваны дисфункцией эндокринной системы. Это воспаления, экзема, псориаз, астма, аутоиммунные заболевания – болезни, вызванные тем, что иммунная система сходит с ума и неожиданно нападает на родные клетки.

Растительные гормоны

Растительными (или фитогормонами) называют биологически активные вещества, которые образуются внутри растения. Такие гормоны имеют регуляторные функции, схожие с действием классических гормонов (прорастание семян, рост растений, созревание плодов и т.д.).

У растений нет специальных органов, которые бы синтезировали фитогормоны, но схема действия этих веществ очень напоминает человеческую: сначала растительные гормоны образуются в одной части растения, потом движутся к другой. Классификация растительных гормонов включает 5 основных групп.

  1. Цитокинины. Они стимулируют рост растения за счет деления клеток, обеспечивают правильную форму и структуру различных его частей.
  2. Ауксины. Активизируют рост корней и плодов за счет растяжения растительных клеток.
  3. Абсцизины. Тормозят рост клеток и отвечают за состояние покоя растения.
  4. Этилен. Регулирует созревание плодов и распускание бутонов и обеспечивает коммуникацию между растениями. Также этилен можно назвать адреналином для растений – он активно участвует в реакции на биотический и абиотический стресс.
  5. Гиббереллины. Стимулируют рост первичного корешка зародыша зернышка и контролируют его дальнейшее прорастание.

Также в число фитогормонов иногда включают витамины группы В, прежде всего тиамин, пиридоксин и ниацин.

Фитогормоны активно используются в сельском хозяйстве для усиления роста растений, а также для создания женских гормональных препаратов в период менопаузы. В естественном виде растительные гормоны встречаются в семечках льна, орешках, отрубях, бобовых, капусте, сое и др.

Еще одна популярная сфера применения растительных гормонов – это косметика. В середине прошлого века западные ученые экспериментировали с добавлением в косметику натуральных, человеческих, гормонов, но сегодня такие опыты запрещены законом и в России, и в США. Зато фитогормоны очень активно используются в женской косметике для любой кожи – и молодой, и зрелой.

— биологически активные вещества. Их выработка происходит в специализированных клетках желез внутренней секреции.

В переводе с древнегреческого языка слово «гормоны» означает «побуждать» или «возбуждать». Именно это действие и является их основной функцией: вырабатываясь в одних клетках, данные вещества побуждают клетки других органов к действию, посылая им сигналы.

То есть в организме человека гормоны играют роль своеобразного механизма, запускающего все процессы жизнедеятельности, которые не могут существовать отдельно.

Гормоны у человека вырабатываются на протяжении всей жизни. На данный момент науке известно более 100 вырабатываемых железами внутренней секреции веществ, для которых характерна гормональная активность и которые регулируют обменные процессы.

История

Собственно термин «гормон» был впервые использован в работах английских физиологов У. Бейлисса и Э. Старлинга в 1902 году, а начало активному изучению эндокринных желез и гормонов было положено английским врачом Т. Аддисоном в 1855 году.

Другим основоположником эндокринологии является французский медик К. Бернар, который изучал процессы внутренней секреции и соответствующие железы организма - органы, секретирующие в кровь те или иные вещества.

Впоследствии свой вклад в данную отрасль науки внес другой французский врач - Ш. Броун-Секар, увязавший развитие определенных заболеваний с недостаточностью функции желез внутренней секреции и показавший, что при терапии указанных болезней могут быть успешно использованы экстракты соответствующих желез.

Согласно современным исследованиям достоверно установлено, что недостаточный или избыточный синтез гормонов негативно влияет на молекулярные механизмы, лежащие в основе регулирования обменных процессов в организме, а это, в свою очередь, способствует развитию практически всех заболеваний желез внутренней секреции.

Принцип работы гормонов

Внешние или внутренние раздражители того или иного рода воздействуют на рецепторы организма и порождают в них импульсы, поступающие сначала в центральную нервную систему, а затем в гипоталамус.

В данном отделе мозга вырабатываются первичные активные вещества удаленного гормонального действия - так называемые рилизинг-факторы, которые, в свою очередь, направляются к гипофизу. Под действием рилизинг-факторов либо ускоряется, либо замедляется выработка и выделение тропных гормонов гипофиза.

На следующем этапе процесса гормоны доставляются по системе кровообращения к тем или иным органам либо тканям (т. н. «мишеням»). При этом у каждого из гормонов имеется своя химическая формула, которая и предопределяет, какой из органов станет мишенью. Стоит заметить, что мишенью может являться не один орган, а несколько.

На органы-мишени они воздействуют через клетки, снабженные особыми рецепторами, способными воспринимать только определенные гормоны. Их взаимосвязь подобна замку с ключом, где в качестве замка выступает клетка-рецептор, открываемая ключом-гормоном.

Прикрепляясь к рецепторам, гормоны проникают во внутренние органы, где при помощи химического воздействия заставляют их выполнять определенные функции, за счет чего, собственно, и реализуется итоговый эффект гормона.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).

Вне зависимости от расположения между рецептором и гормоном всегда существует четкое структурное и пространственное соответствие.

Увеличение или уменьшение выработки гормонов, а также снижение или увеличение чувствительности гормональных рецепторов и нарушение гормонального транспорта приводит к эндокринным заболеваниям.

Роль гормонов в организме человека

Гормоны имеют огромное биологическое значение, с их помощью осуществляется координация и согласование работы всех органов и систем:

  • Благодаря данным веществам каждый человек имеет определенный рост и вес.
  • Гормоны оказывают влияние на эмоциональное состояние человека.
  • На протяжении всей жизни гормоны стимулируют естественный процесс роста и распада клеток.
  • Они участвуют в формировании иммунной системы, стимулируя, либо угнетая ее.
  • Вещества, вырабатываемые железами внутренней секреции, контролируют обменные процессы в организме.
  • Под действием гормонов организм легче переносит физические нагрузки и стрессовые ситуации.
  • При содействии биологически активных веществ происходит подготовка к определенному жизненному этапу, в том числе к половому созреванию, родам и менопаузе.
  • Определенные вещества контролируют репродуктивный цикл.
  • Ощущение голода и сытости человек испытывает также под действием гормонов.
  • При нормальной выработке гормонов и их функции усиливается половое влечение, а при уменьшении их концентрации в крови либидо снижается.
  • Гормоны поддерживают гомеостаз.

Основные свойства и особенности действия гормонов

  1. Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях – в диапазоне от 10–8 до 10–12М.
  2. Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.
  3. Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:
  • пептидные гормоны: сек – мин;
  • белковые гормоны: мин – часы;
  • стероидные гормоны: часы;
  • йодтиронины: сутки.
  1. Специфичность биологического действия (каждый гормон оказывает особое воздействие на конкретный орган или ткань, через определённую клетку-рецептор).
  2. Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.
  3. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых – стимулируют анаболизм.

Классификация гормонов

Гормоны классифицируются по химическому строению , биологическим функциям , месту образования и механизму действия .

Классификация по химическому строению

По химическому строению гормоны делят на следующие группы:

  1. Белково-пептидные соединения. Эти гормоны несут ответственность за осуществление обменных процессов в организме. А важнейшим компонентом для их выработки является белок. К пептидам относятся инсулин и глюкагон, вырабатываемые поджелудочной железой, и гормон роста, образующийся в гипофизе. В их состав может входить самое разнообразное количество аминокислотных остатков - от 3 до 250 и более.
  2. Производные аминокислот. Эти гормоны вырабатываются несколькими железами, в том числе надпочечниками и щитовидной железой. А основой для их производства является тирозин. Представителями этого вида являются адреналин, норадреналин, мелатонин, а также тироксин.
  3. Стероиды. Данные гормоны вырабатываются в яичках и яичниках из холестерина. Эти вещества выполняют важнейшие функции, позволяющие человеку развиваться и обретать необходимую физическую форму, украшающую тело, а также воспроизводить на свет потомство. К стероидам относятся прогестерон, андроген, эстрадиол и дигидротестостерон.
  4. производные арахидоновой кислоты – эйкозаноиды (оказывают местное воздействие на клетки). Эти вещества действуют на клетки, находящиеся рядом с теми органами, которые участвуют в их производстве. К числу этих гормонов относятся лейкотриены, тромбоксаны и простогландины.

Пептидные (белковые)

  1. Кортикотропин
  2. Соматотропин
  3. Тиреотропин
  4. Пролактин
  5. Лютропин
  6. Лютеинеизирующий гормон
  7. Фолликулостимули-рующий гормон
  8. Мелоноцитстимули-рующий гормон
  9. Вазопрессин
  10. Окситоцин
  11. Паратгормон
  12. Кальцитонин
  13. Инсулин
  14. Глюкагон

Производные аминокислот

  1. Адреналин
  2. Норадреналин
  3. Трийодтиронин (Т3)
  4. Тироксин (Т4)

Стероиды

  1. Глюкокортикоиды
  2. Минералокорти-коиды
  3. Андрогены
  4. Эстрогены
  5. Прогестины
  6. Кальцитриол

Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп:

Таблица. Классификация гормонов по биологическим функциям.

Регулируемые процессы

Обмен углеводов, липидов, аминокислот

Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин

Водно-солевой обмен

Альдостерон, вазопрессин

Обмен кальция и фосфатов

Паратгормон, кальцитонин, кальцитриол

Репродуктивная функция

Эстрогены, андрогены, гонадотропные гормоны

Синтез и секреция гормонов эндокринных желез

Тропные гормоны гипофиза, либерины и статины гипоталамуса

Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.

Классификация по месту образования

По месту образования гормоны делятся на:

Классификация по механизму действия

По механизму действия гормоны можно разделить на 3 группы:

  1. Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;
  2. гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;
  3. гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

Неблагоприятные факторы воздействующие на работу гормонов

Основные гормоны человека на протяжении всей жизни обеспечивают стабильность работы организма. Под действием некоторых факторов стабильность процесса может нарушаться. Их примерный список выглядит следующим образом:

  • различные заболевания;
  • стрессовые ситуации;
  • изменение климатических условий;
  • неблагополучная экологическая обстановка;
  • возрастные изменения в организме. (В организме мужчин выработка гормонов более стабильна, нежели у женщин. В женском организме количество секретируемых гормонов изменяется в зависимости от различных факторов, в том числе фазы менструального цикла, беременности, родов и менопаузы.

О том, что мог образоваться гормональный дисбаланс, говорят следующие признаки:

  • общая слабость организма;
  • судороги в конечностях;
  • головная боль и звон в ушах;
  • потливость;
  • нарушение координации движений и замедление реакции;
  • ухудшение памяти и провалы;
  • резкая смена настроения и депрессивные состояния;
  • беспричинное снижение или повышение массы тела;
  • растяжки на коже;
  • нарушение работы органов пищеварения;
  • рост волос в местах, где их быть не должно;
  • гигантизм и нанизм, а также акромегалия;
  • проблемы с кожей, в том числе повышение жирности волос, угри и перхоть;
  • нарушения менструального цикла.

Как определяется уровень гормонов

Если какое-либо из этих состояний проявляется систематически, необходимо обратиться к эндокринологу. Только врач на основании анализа сможет определить, какие гормоны вырабатываются в недостаточном или избыточном количестве, и назначить правильное лечение.

Как достичь гормонального баланса

При легком гормональном дисбалансе показана корректировка образа жизни:

Соблюдение режима дня. Полноценная работа систем организма возможна лишь при создании баланса между работой и отдыхом. К примеру, выработка соматотропина усиливается через 1-3 часа после засыпания. При этом ложиться спать рекомендуется не позднее 23 часов, а продолжительность сна должна составлять не менее 7 часов.

Физическая активность. Стимулировать выработку биологически активных веществ позволяет физическая активность. Поэтому 2-3 раза в неделю необходимо заниматься танцами, аэробикой или повышать активность другими способами.

Сбалансированное питание с увеличением количества потребления белка и уменьшением количества жира.

Соблюдение питьевого режима. В течение дня необходимо выпивать 2-2,5 литра воды.

Если же требуется более интенсивное лечение, изучается таблица гормонов, и применяются медицинские препараты, которые содержат их синтетические аналоги. Однако назначать их вправе только специалист.



Биологически активное вещество (БАВ), физиологически активное вещество (ФАВ) - вещество, которое в малых количествах (мкг, нг) оказывает выраженный физиологический эффект на различные функции организма.

Гормон — физиологически активное вещество, вырабатываемое или специализированными эндокринными клетками, выделяемое во внутреннюю среду организма (кровь, лимфа) и оказывающее дистантное действие на клетки-мишени.

Гормон - это сигнальная молекула, секретируемая эндокринными клетками, которая посредством взаимодействия со специфическими рецепторами клеток-мишеней регулирует их функции. Поскольку гормоны являются носителями информации, то они, как и другие сигнальные молекулы, обладают высокой биологической активностью и вызывают ответные реакции клеток-мишеней в очень малых концентрациях (10 -6 — 10 -12 М/л).

Клетки-мишени (ткани-мишени, органы-мишени) — клетки, ткани или органы, в которых имеются специфичные для данного гормона рецепторы. Некоторые гормоны имеют единственную ткань-мишень, тогда как другие оказывают влияние повсеместно в организме.

Таблица. Классификация физиологически активных веществ

Свойства гормонов

Гормоны имеют ряд общих свойств. Обычно они образуются специализированными эндокринными клетками. Гормоны обладают избирательностью действия, которая достигается благодаря связыванию со специфическими рецепторами, находящимися на поверхности клеток (мембранные рецепторы) или внутри них (внутриклеточные рецепторы), и запуску каскада процессов внутриклеточной передачи гормонального сигнала.

Последовательность событий передачи гормонального сигнала может быть представлена в виде упрощенной схемы «гормон (сигнал, лиганд) -> рецептор -> второй (вторичный) посредник -> эффекторные структуры клетки -> физиологический ответ клетки». У большинства гормонов отсутствует видовая специфичность (за исключением ), что позволяет изучать их эффекты на животных, а также использовать гормоны, полученные от животных, для лечения больных людей.

Различают три варианта межклеточного взаимодействия с помощью гормонов:

  • эндокринный (дистантный), когда они доставляются к клеткам-мишеням от места продукции кровью;
  • паракринный — гормоны диффундируют к клетке-мишени от рядом расположенной эндокринной клетки;
  • аутокринный — гормоны воздействуют на клетку-продуцент, которая одновременно является для него клеткой-мишенью.

По химической структуре гормоны делят на три группы:

  • пептиды (число аминокислот до 100, например тиротропина рилизинг-гормон, АКТГ) и белки (инсулин, гормон роста, и др.);
  • производные аминокислот: тирозина (тироксин, адреналин), триптофана — мелатонин;
  • стероиды, производные холестерола (женские и мужские половые гормоны, альдостерон, кортизол, кальцитриол) и ретиноевая кислота.

По выполняемой функции гормоны делят на три группы:

  • эффекторные гормоны , действующие непосредственно на клетки-мишени;
  • тронные гормоны гипофиза , контролирующие функцию периферических эндокринных желез;
  • гормоны гипоталамуса , регулирующие секрецию гормонов гипофизом.

Таблица. Типы действия гормонов

Тип действия

Характеристика

Гормональное (гемокринное)

Действие гормона на значительном удалении от места образования

Изокринное (местное)

Гормон, синтезируемый в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой. Его высвобождение осуществляется в межтканевую жидкость и кровь

Нейрокринное (нейроэндокринное)

Действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейромедиатора или нейромодулятора

Паракринное

Разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости

Юкстакринное

Разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передастся через плазматическую мембрану рядом расположенной клетки

Аутокринное

Высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность

Соликринное

Высвобождающийся из клетки гормон поступает в просвет протока и достигает, таким образом, другой клетки, оказывая на нес специфическое воздействие (характерно для желудочно- кишечных гормонов)

Гормоны циркулируют в крови в свободном (активная форма) и связанном (неактивная форма) состоянии с белками плазмы или форменных элементов. Биологической активностью обладают гормоны в свободном состоянии. Содержание их в крови зависит от скорости секреции, степени связывания, захвата и скорости метаболизма в тканях (связывания со специфическими рецепторами, разрушения или инактивации в клетках-мишенях или гепатоцитах), удаления с мочой или желчью.

Таблица. Физиологически активные вещества, открытые в последнее время

Ряд гормонов может подвергаться в клетках-мишенях химическим превращениям в более активные формы. Так, гормон «тироксин», подвергаясь дейодированию, превращается в более активную форму — трийодтиронин. Мужской половой гормон тестостерон в клетках-мишенях может не только превращаться в более активную форму — дегидротестостерон, но и в женские половые гормоны группы эстрогенов.

Действие гормона на клетку-мишень обусловлено связыванием, стимуляцией специфического к нему рецептора, после чего происходит передача гормонального сигнала на внутриклеточный каскад превращений. Передача сигнала сопровождается его многократным усилением, и действие на клетку небольшого числа молекул гормона может сопровождаться мощной ответной реакцией клеток-мишеней. Активация гормоном рецептора сопровождается также включением внутриклеточных механизмов, прекращающих ответ клетки на действие гормона. Это могут быть механизмы, понижающие чувствительность (десенситизация/адаптация) рецептора к гормону; механизмы, дефосфорилирующие внутриклеточные ферментные системы и др.

Рецепторы к гормонам, как и к другим сигнальным молекулам, локализованы на клеточной мембране или внутри клетки. С рецепторами клеточной мембраны (1-TMS, 7-TMS и лигандзависимые ионные каналы) взаимодействуют гормоны гидрофильной (лииофобной) природы, для которых клеточная мембрана не проницаема. Ими являются катехоламины, мелатонин, серотонин, гормоны белково-пептидной природы.

Гормоны гидрофобной (липофильной) природы диффундируют через плазматическую мембрану и связываются с внутриклеточными рецепторами. Эти рецепторы делятся на цитозольные (рецепторы стероидных гормонов — глюко- и минералокортикоидов, андрогенов и прогестинов) и ядерные (рецепторы тиреоидных йодсодержащих гормонов, кальцитриола, эстрогенов, ретиноевой кислоты). Цитозольные рецепторы и рецепторы эстрогенов связаны с белками теплового шока (БТШ), что предотвращает их проникновение в ядро. Взаимодействие гормона с рецептором приводит к отделению БТШ, образованию гормон-рецепторного комплекса и активации рецептора. Комплекс гормон-рецептор перемещается в ядро, где он взаимодействует со строго определенными гормон-чувствительными (узнающими) участками ДНК. Это сопровождается изменением активности (экспрессией) определенных генов, контролирующих синтез белков в клетке и другие процессы.

По использованию тех или иных внутриклеточных путей передачи гормонального сигнала наиболее распространенные гормоны можно разделить на ряд групп (табл. 8.1).

Таблица 8.1. Внутриклеточные механизмы и пути действия гормонов

Гормоны контролируют разнообразные реакции клеток-мишеней и через них — физиологические процессы организма. Физиологические эффекты гормонов зависят от их содержания в крови, количества и чувствительности рецепторов, состояния пострецепторных структур в клетках-мишенях. Под действием гормонов может происходить активация или торможение энергетического и пластического метаболизма клеток, синтеза различных, в том числе белковых веществ (метаболическое действие гормонов); изменение скорости деления клетки, ее дифференцировки (морфогенетическое действие), инициирование запрограммированной гибели клетки (апоптоз); запуск и регуляция сокращения и расслабления гладких миоцитов, секреции, абсорбции (кинетическое действие); изменение состояния ионных каналов, ускорение или торможение генерации электрических потенциалов в водителях ритма (корригирующее действие), облегчение или угнетение влияния других гормонов (реактогенное действие) и т.д.

Таблица. Распределение гормона в крови

Скорость возникновения в организме и продолжительность ответных реакций на действие гормонов зависит от типа стимулируемых рецепторов и скорости метаболизма самих гормонов. Изменения физиологических процессов могут наблюдаться через несколько десятков секунд и длиться кратковременно при стимуляции рецепторов плазматической мембраны (например, сужение сосудов и повышение артериального давления крови под действием адреналина) или наблюдаться через несколько десятков минут и длиться часами при стимуляции ядерных рецепторов (например, усиление обмена в клетках и увеличение потребления кислорода организмом при стимуляции тиреоидных рецепторов трийодтиронином).

Таблица. Время действия физиологически активных веществ

Поскольку одна и та же клетка может содержать рецепторы к разным гормонам, то она способна быть одновременно клеткой-мишенью для нескольких гормонов и других сигнальных молекул. Действие одного гормона на клетку нередко сочетается с влиянием других гормонов, медиаторов, цитокинов. При этом в клетках-мишенях может происходить запуск ряда путей передачи сигналов, в результате взаимодействия которых может наблюдаться усиление или торможение ответной реакции клетки. Например, на гладкий миоцит стенки сосудов могут одновременно действовать норадреналин и , суммируя их сосудосуживающее влияние. Сосудосуживающее действие вазопрессина может быть устранено или ослаблено одновременным действием на гладкие миоциты сосудистой стенки брадикинина или оксида азота.

Регуляция образования и секреции гормонов

Регуляция образования и секреции гормонов является одной из важнейших функций и нервной систем организма. Среди механизмов регуляции образования и секреции гормонов выделяют влияние ЦНС, «тройных» гормонов, влияние по каналам отрицательной обратной связи концентрации гормонов в крови, влияние конечных эффектов гормонов на их секрецию, влияние суточных и других ритмов.

Нервная регуляция осуществляется в различных эндокринных железах и клетках. Это регуляция образования и секреции гормонов нейросекреторными клетками переднего гипоталамуса в ответ на поступление к нему нервных импульсов с различных областей ЦНС. Эти клетки обладают уникальной способностью возбуждаться и трансформировать возбуждение в образование и секрецию гормонов, стимулирующих (рилизинг-гормоны, либерины) или тормозящих (статины) секрецию гормонов гипофизом. Например, при увеличении притока нервных импульсов к гипоталамусу в условиях психоэмоционального возбуждения, голода, болевого воздействия, действии тепла или холода, при инфекции и в других чрезвычайных условиях, нейросекреторные клетки гипоталамуса высвобождают в портальные сосуды гипофиза кортикотропина рилизинг-гормон, который усиливает секрецию адренокортикотропного гормона (АКТГ) гипофизом.

Непосредственное влияние на образование и секрецию гормонов оказывает АНС. При повышении тонуса СНС увеличивается секреция тройных гормонов гипофизом, секреция катехоламинов мозговым веществом надпочечников, тиреоидных гормонов щитовидной железой, снижается секреция инсулина. При повышении тонуса ПСНС увеличивается секреция инсулина, гастрина и тормозится секреция тиреоидных гормонов.

Регуляции тронными гормонами гипофиза используется для контроля образования и секреции гормонов периферическими эндокринными железами (щитовидной, корой надпочечников, половыми железами). Секреция тропных гормонов находится под контролем гипоталамуса. Тропные гормоны получили свое название из-за их способности связываться (обладать сродством) с рецепторами клеток-мишеней, формирующих отдельные периферические эндокринные железы. Троп- ный гормон к тироцитам щитовидной железы называют тиро- тропином или тиреотропным гормоном (ТТГ), к эндокринным клеткам коры надпочечников — адренокортикотропным гормоном (АКГТ). Тропные гормоны к эндокринным клеткам половых желез получили название: лютропин или лютеинизирующий гормон (ЛГ) — к клеткам Лейдига, желтому телу; фоллитропин или фолликулостимулирующий гормон (ФСГ) — к клеткам фолликулов и клеткам Сертоли.

Тропные гормоны при повышении их уровня в крови многократно стимулируют секрецию гормонов периферическими эндокринными железами. Они могут оказывать на них также другие эффекты. Так, например, ТТГ усиливает в щитовидной железе кровоток, активирует метаболические процессы в тироцитах, захват ими йода из крови, ускоряет процессы синтеза и секреции тиреоидных гормонов. При избыточном количестве ТТГ наблюдается гипертрофия щитовидной железы.

Регуляция обратными связями используется для контроля секреции гормонов гипоталамуса и гипофиза. Ее суть заключается в том, что нейросекреторные клетки гипоталамуса имеют рецепторы и являются клетками-мишенями гормонов периферической эндокринной железы и тройного гормона гипофиза, контролирующего секрецию гормонов этой периферической железой. Таким образом, если под влиянием гипоталамического тиреотропин-рилизинг-гормона (ТРГ) увеличится секреция ТТГ, то последний свяжется не только с рецепторами тирсоцитов, но и с рецепторами нейросекреторных клеток гипоталамуса. В щитовидной железе ТТГ стимулирует образование тиреоидных гормонов, а в гипоталамусе — тормозит дальнейшую секрецию ТРГ. Связь между уровнем ТТГ в крови и процессами образования и секреции ТРГ в гипоталамусе получила название короткой петли обратной связи.

На секрецию ТРГ в гипоталамусе оказывает влияние и уровень гормонов щитовидной железы. Если их концентрация в крови повышается, то они связываются с рецепторами тиреоидных гормонов нейросекреторных клеток гипоталамуса и тормозят синтез и секрецию ТРГ. Связь между уровнем тиреоидных гормонов в крови и процессами образования и секреции ТРГ в гипоталамусе получила название длинной петли обратной связи. Имеются экспериментальные данные о том, что гормоны гипоталамуса не только регулируют синтез и выделение гормонов гипофиза, но и тормозят собственное выделение, что определяют понятием сверхкороткой петли обратной связи.

Совокупность железистых клеток гипофиза, гипоталамуса и периферических эндокринных желез и механизмов их взаимного влияния друг на друга назвали системами или осями гипофиз — гипоталамус — эндокринная железа. Выделяют системы (оси) гипофиз — гипоталамус — щитовидная железа; гипофиз — гипоталамус — кора надпочечников; гипофиз — гипоталамус — половые железы.

Влияние конечных эффектов гормонов на их секрецию имеет место в островковом аппарате поджелудочной железы, С-клетках щитовидной железы, паращитовидных железах, гипоталамусе и др. Это демонстрируется следующими примерами. При повышении в крови уровня глюкозы стимулируется секреция инсулина, а при понижении — глюкагона. Эти гормоны по паракринному механизму тормозят секрецию друг друга. При повышении в крови уровня ионов Са 2+ стимулируется секреция кальцитонина, а при понижении — паратирина. Прямое влияние концентрации веществ на секрецию гормонов, контролирующих их уровень, является быстрым и эффективным способом поддержания концентрации этих веществ в крови.

Среди рассматриваемых механизмов регуляции секреции гормонов их конечными эффектами можно отметить регуляцию секреции антидиуретического гормона (АДГ) клетками заднего гипоталамуса. Секреция этого гормона стимулируется при повышении осмотического давления крови, например при потере жидкости. Снижение диуреза и задержка жидкости в организме под действием АДГ ведут к снижению осмотического давления и торможению секреции АДГ. Похожий механизм используется для регуляции секреции натрийуретического пептида клетками предсердий.

Влияние суточных и других ритмов на секрецию гормонов имеет место в гипоталамусе, надпочечниках, половых, шишковидной железах. Примером влияния суточного ритма является суточная зависимость секреции АКТГ и кортикостероидных гормонов. Самый низкий их уровень в крови наблюдается в полночь, а самый высокий — утром после пробуждения. Наиболее высокий уровень мелатонина регистрируется ночью. Хорошо известно влияние лунного цикла на секрецию половых гормонов у женщин.

Определение гормонов

Секреция гормонов - поступление гормонов во внутреннюю среду организма. Полипептидные гормоны накапливаются в гранулах и секретируются путем экзоцитоза. Стероидные гормоны не накапливаются в клетке и секретируются сразу после синтеза путем диффузии через клеточную мембрану. Секреция гормонов в большинстве случаев имеет циклический, пульсирующий характер. Периодичность секреции — от 5-10 мин до 24 ч и более (распространенный ритм — около 1 ч).

Связанная форма гормона — образование обратимых, соединенных нековалентными связями комплексов гормонов с белками плазмы и форменными элементами. Степень связывания различных гормонов сильно варьирует и определяется их растворимостью в плазме крови и наличием транспортного белка. Например, 90 % кортизола, 98 % тестостерона и эстрадиола, 96 % трийодтиронина и 99 % тироксина связываются с транспортными белками. Связанная форма гормона не может взаимодействовать с рецепторами и формирует резерв, который может быть быстро мобилизован для пополнения пула свободного гормона.

Свободная форма гормона — физиологически активное вещество в плазме крови в несвязанном с белком состоянии, способное взаимодействовать с рецепторами. Связанная форма гормона находится в динамическом равновесии с пулом свободного гормона, который в свою очередь находится в равновесии с гормоном, связанным с рецепторами в клетках-мишенях. Большинство полипептидных гормонов, за исключением соматотропина и окситоцина, циркулирует в низких концентрациях в крови в свободном состоянии, не связываясь с белками.

Метаболические превращения гормона - его химическая модификация в тканях-мишенях или других образованиях, обусловливающая снижение/повышение гормональной активности. Важнейшим местом обмена гормонов (их активации или инактивации) является печень.

Скорость метаболизма гормона - интенсивность его химического превращения, которая определяет длительность циркуляции в крови. Период полураспада катехоламинов и полипептидных гормонов составляет несколько минут, а тиреоидных и стероидных гормонов — от 30 мин до нескольких суток.

Гормональный рецептор — высокоспециализированная клеточная структура, входящая в состав плазматических мембран, цитоплазмы или ядерного аппарата клетки и образующая специфичное комплексное соединение с гормоном.

Органоспецифичность действия гормона - ответные реакции органов и тканей на физиологически активные вещества; они строго специфичны и не могут быть вызваны другими соединениями.

Обратная связь — влияние уровня циркулирующего гормона на его синтез в эндокринных клетках. Длинная цепь обратной связи — взаимодействие периферической эндокринной железы с гипофизарными, гипоталамическими центрами и с супрагипоталамическими областями ЦНС. Короткая цепь обратной связи — изменение секреции гипофизарного тронного гормона, модифицирует секрецию и высвобождение статинов и либеринов гипоталамуса. Ультракороткая цепь обратной связи — взаимодействие в пределах эндокринной железы, при котором выделение гормона влияет на процессы секреции и высвобождения его самого и других гормонов из данной железы.

Отрицательная обратная связь - повышение уровня гормона, приводящее к торможению его секреции.

Положительная обратная связь — повышение уровня гормона, обусловливающее стимуляцию и возникновение пика его секреции.

Анаболические гормоны - физиологически активные вещества, способствующие образованию и обновлению структурных частей организма и накоплению в нем энергии. К таким веществам относятся гонадотропные гормоны гипофиза (фоллитропин, лютропин), половые стероидные гормоны (андрогены и эстрогены), гормон роста (соматотропин), хориони- ческий гонадотропин плаценты, инсулин.

Инсулин белковое вещество, вырабатываемое в β-клетках островков Лангерганса, состоящее из двух полипептидных цепей (А-цепь — 21 аминокислота, В-цепь — 30), снижающее уровень глюкозы крови. Первый белок, у которого была полностью определена первичная структура Ф. Сенгером в 1945-1954 гг.

Катаболические гормоны — физиологически активные вещества, способствующие распаду различных веществ и структур организма и высвобождению из него энергии. К таким веществам относятся кортикотропин, глюкокортикоиды (корти- зол), глюкагон, высокие концентрации тироксина и адреналина.

Тироксин (тетрайодтиронин) - йодсодержащее производное аминокислоты тирозина, вырабатываемое в фолликулах щитовидной железы, повышающее интенсивность основного обмена, теплопродукцию, оказывающее влияние на рост и дифференцировку тканей.

Глюкагон - полипептид, вырабатываемый в а-клетках островков Лангерганса, состоящий из 29 аминокислотных остатков, стимулирующий распад гликогена и повышающий уровень глюкозы крови.

Кортикостероидные гормоны - соединения, образующиеся в корковом веществе надпочечников. В зависимости от числа атомов углерода в молекуле делят на С 18 -стероиды — женские половые гормоны — эстрогены, С 19 -стероиды — мужские половые гормоны — андрогены, С 21 -стероиды — собственно кортикостероидные гормоны, обладающие специфическим физиологическим действием.

Катехоламины — производные пирокатехина, активно участвующие в физиологических процессах в организме животных и человека. К катехоламинам относятся адреналин, норадреналин и дофамин.

Симпатоадреналовая система — хромаффинные клетки мозгового вещества надпочечников и иннервирующие их преганглионарные волокна симпатической нервной системы, в которых синтезируются катехоламины. Хромаффинные клетки также обнаружены в аорте, каротидном синусе, внутри и около симпатических ганглиев.

Биогенные амины — группа азотсодержащих органических соединений, образующихся в организме путем декарбоксилирования аминокислот, т.е. отщепления от них карбоксильной группы — СООН. Многие из биогенных аминов (гистамин, серотонин, норадреналин, адреналин, дофамин, тирамин и др.) оказывают выраженный физиологический эффект.

Эйкозаноиды - физиологически активные вещества, производные преимущественно арахидоновой кислоты, оказывающие разнообразные физиологические эффекты и подразделяющиеся на группы: простагландины, простациклины, тром- боксаны, левугландины, лейкотриены и др.

Регуляторные пептиды — высокомолекулярные соединения, представляющие собой цепочку аминокислотных остатков, соединенных пептидной связью. Регуляторные пептиды, насчитывающие до 10 аминокислотных остатков, называют олигопептидами, от 10 до 50 — полипептидами, свыше 50 — белками.

Антигормон — защитное вещество, вырабатываемое организмом при длительном введении белковых гормональных препаратов. Образование антигормона является иммунологической реакцией на введение извне чужеродного белка. По отношению к собственным гормонам организм не образует антигормоны. Однако могут быть синтезированы вещества, близкие по строению к гормонам, которые при введении в организм действуют как антиметаболиты гормонов.

Антиметаболиты гормонов — физиологически активные соединения, близкие по строению к гормонам и вступающие с ними в конкурентные, антагонистические отношения. Антиметаболиты гормонов способны занимать их место в физиологических процессах, совершающихся в организме, или блокировать гормональные рецепторы.

Тканевой гормон (аутокоид, гормон местного действия) — физиологически активное вещество, вырабатываемое неспециализированными клетками и оказывающее преимущественно местный эффект.

Нейрогормон — физиологически активное вещество, вырабатываемое нервными клетками.

Эффекторный гормон - физиологически активное вещество, оказывающее непосредственный эффект на клетки и органы-мишени.

Тронный гормон — физиологически активное вещество, действующее на другие эндокринные железы и регулирующее их функции.