Нарушение проведения по дистальным участкам волокон что это. Аксональная нейропатия

Стимуляционная ЭМГ включает в себя различные методики исследования периферических нервов, вегетативной нервной системы и нервно-мышечной передачи:

  • СРВ по моторным волокнам;
  • СРВ по чувствительным волокнам;
  • F-волну;
  • Н -рефлекс;
  • мигательный рефлекс;
  • бульбокавернозный рефлекс;
  • вызванный кожно-симпатический потенциал (ВКСП) ;
  • декремент-тест.

Стимуляционные методы исследования про водящей функции моторных волокон, сенсорных волокон и ВКСП позволяют выявить патологию каждого из типов нервных волокон в нерве и определить локализацию поражения (дистальный тип поражения нервов характерен для полиневропатий, локальное нарушение проводящей функции - для туннельных синдромов и т.д.).

Варианты реакции периферического нерва на повреждение довольно ограничены.

Любой патологический фактор, вызывающий нарушение функции нерва, в конечном счёте приводит к повреждению аксонов, или миелиновой оболочки, либо обоих этих образований.

Цели исследования: определение функционального состояния и степени поражения моторных, сенсорных и вегетативных структур нервов; локальных нарушений функции миелинизированных нервов, а также восстановления двигательных функций; диагностика и дифференциальная диагностика поражений сенсомоторных образований на сегментарном, надсегментарном, периферическом и нервномышечном уровне; выявление и оценка степени нарушения нервно-мышечной передачи при миастении и миастенических синдромах; оценка перспективности различных методов лечения и результатов применения определённых лекарственных препаратов, а также степени реабилитации больных и восстановления функции поражённых двигательных и чувствительных нервов.

ПОКАЗАНИЯ

Подозрение на заболевания, связанные с нарушением функции двигательных и чувствительных волокон периферических нервов или нервно-мышечной передачи:

  • различные полиневропатии;
  • мононевропатии;
  • моторные, сенсорные и сенсомоторные невропатии;
  • мультифокальная моторная невропатия;
  • тоннельные синдромы;
  • травматические поражения нервов;
  • невральные амиотрофии, включая наследственные формы;
  • поражения корешков спинного мозга, шейно-плечевого и пояснично-крестцового сплетения;
  • эндокринные нарушения (особенно гипотиреоз, сахарный диабет 2 типа) ;
  • половая дисфункция, сфинктерные расстройства;
  • миастения и миастенические синдромы;
  • ботулизм.

ПРОТИВОПОКАЗАНИЯ

Каких-либо особых противопоказаний (в том числе наличие имплантатов, кардиостимуляторов, эпилепсии) к проведению стимуляционной ЭМГ нет. При необходимости исследование можно проводить у больных в коматозном состоянии.

ПОДГОТОВКА К ИССЛЕДОВАНИЮ

Специальной подготовки не требуется. Перед началом исследования больной снимает часы, браслеты. Обычно пациент находится в положении полусидя в специальном кресле, мышцы должны быть максимально расслаблены. Исследуемая конечность иммобилизуется, чтобы исключить искажение формы потенциалов.

Конечность при проведении исследования должна быть тёплой (температура кожи 26-32 ОС) , так как при снижении температуры кожи на 1 ос происходит снижение СРВ на 1,1-2,1 м/с. Если конечность холодная, перед обследованием её хорошо прогревают специальной лампой или любым источником тепла.

МЕТОДИКА И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

В основе стимуляционной ЭМГ лежит регистрация суммарного ответа мышцы (М-ответа) или нерва на стимуляцию импульсом электрического тока. Исследуют про водящую функцию моторных, сенсорных и вегетативных аксонов периферических нервов или функциональное состояние нервно-мышечной передачи.

Нарушение функции аксона (аксональный процесс) ведёт к развитию в мышце денервационно-реиннервационного процесса (ДРП) , степень выраженности которого определяют с помощью игольчатой ЭМГ. Стимуляционная ЭМГ выявляет снижение амплитуды М -ответа.

Нарушение функции миелиновой оболочки (демиелинизирующий процесс) проявляется снижением СРВ по нерву, повышением порога вызывания М -ответа и увеличением резидуальной латентности.

Следует учитывать, что первично аксональный процесс часто вызывает вторичную демиелинизацию, а при демиелинизирующем процессе на определённом этапе возникает вторичное поражение аксона. Задача ЭМГ - определить тип поражения нерва: аксональный, демиелинизирующий или смешанный (аксональнодемиелинизирующий).

Стимуляцию и регистрацию ответа мышцы проводят с помощью поверхностных электродов. В качестве отводящих электродов используют стандартные накожные хлорсеребряные (AgCl) дисковые или чашечковые электроды, которые крепятся с помощью лейкопластыря. Для уменьшения импеданса используют электропроводные гель или пасту, кожу тщательно протирают этиловым спиртом.

М-ответ

М -ответ - суммарный потенциал действия, возникающий в мышце при электрическом раздражении её двигательного нерва. Максимальную амплитуду и площадь М-ответ имеет в зоне распределения концевых пластинок (в двигательной точке) . Двигательной точкой называют проекцию на кожу зоны концевых пластинок нерва. Двигательная точка обычно располагается на самом выпуклом участке (брюшке) мышцы.

При исследовании М-ответа используют биполярный способ отведения: один электрод является активным, второй - референтным. Активный регистрирующий электрод располагают в области двигательной точки мышцы, иннервируемой исследуемым нервом; референтный электрод - в области сухожилия данной мышцы или в месте при крепления сухожилия к костному выступу (рис. 8-1).

Рис 8-1 . Исследование проводящей функции локтевого нерва. Наложение электродов: активный отводящий электрод располагается в двигательной точке мышцы, отводящей мизинец; референтный - на проксимальной фаланге V пальца; стимулирующий - в дистальной точке стимуляции на запястье; заземляющий - чуть выше запястья.

При исследовании проводящей функции нервов используют стимулы супрамаксимальной интенсивности. Обычно М-ответ с нервов рук начинают регистрировать при величине стимула 6-8 мА, с нервов ног - 10-15 мА. По мере увеличения интенсивности стимула амплитуда М -ответа увеличивается за счёт включения в М -ответ новых ДЕ.

Плавное повышение амплитуды М -ответа связано с различной возбудимостью нервных волокон: сначала возбуждаются низкопороговые быстропроводящие толстые волокна, затем тонкие, медленнопроводящие волокна. Когда в М -ответ включаются все мышечные волокна исследуемой мышцы, при дальнейшем увеличении интенсивности стимула амплитуда М -ответа перестаёт увеличиваться.

Для достоверности исследования амплитуду стимула увеличивают ещё на 20-30%.

Такая величина стимула и называется супрамаксимальной.

Стимуляцию проводят в нескольких точках по ходу нерва (рис. 8-2). Желательно, чтобы расстояние между точками стимуляции было не менее 10 см. Регистрируют М-ответ в каждой точке стимуляции. Разность латентности М-ответов и расстояние между точками стимуляции позволяют вычислить СРВ по нерву.

Рис. 8-2. Схема исследования проводящей функции локтевого нерва. Схематически изображены точки расположения отводящих электродов и точки стимуляции локтевого нерва. В дистальной точке стимуляции М-ответ имеет самую короткую концевую латентность. По разнице латентностей между дистальной и более проксимальной точками стимуляции определяют СРВ.

При исследовании про водящей функции моторных нервов анализируют сле- дующие параметры:

  • амплитуду М -ответа;
  • форму, площадь, длительность негативной фазы М -ответа;
  • наличие блоков проведения, декремент амплитуды и площади М -ответа;
  • порог вызывания М -ответа;
  • СРВ по моторным (двигательным) волокнам, латентность М-ответа;
  • резидуальную латентность.

Основными диагностически значимыми параметрами считают амплитуду М -ответа и СРВ. Амплитуда, площадь, форма и длительность М -ответа отражают количество и синхронность сокращения мышечных волокон в ответ на стимуляцию нерва.

Амплитуда М-ответа

Амплитуду М -ответа оценивают по негативной фазе, так как её форма более постоянна, и измеряют в милливольтах (мВ). Снижение амплитуды М-ответа - электрофизиологическое отражение уменьшения количества сокращающихся мышечных волокон в мышце.

Причины снижения амплитуды М -ответа:

Нарушение возбудимости нервных волокон, когда часть нервных волокон не генерирует импульс в ответ на стимуляцию электрическим током (аксональный тип поражения нервов - аксональные полиневропатии) ;

Демиелинизация нервных волокон, когда мышечные волокна не отвечают на нервный импульс, что при водит К снижению амплитуды М -ответа, однако трофическая функция нерва остаётся сохранной;

Различные миопатии (ПМД, полимиозит и др.) . М -ответ отсутствует при атрофии мышцы, разрыве нерва или его полной деге· нерации.

Для неврального уровня поражения характерны повышение порога вызывания М -ответа и нарушение СРВ, повышение резидуальной латентности, "рассыпанные " F-волны.

Для нейронального уровня поражения (БАС, спинальные амиотрофии, опухоль спинного мозга, миелопатия и т.п.), когда уменьшается количество мотонейронов и, соответственно, аксонов и мышечных волокон, характерны нормальный порог вызывания М-ответа, нормальная СРВ, "гигантские", крупные и повторные F-волны и полное их выпадение.

Для мышечного уровня поражения характерны нормальные СРВ и порог вызывания М-ответа, отсутствие F-волн или наличие низкоамплитудных F-волн.

Данные стимуляционной ЭМГ не позволяют однозначно оценить уровень поражения периферического нейромоторного аппарата - для этого необходима игольчатая ЭМГ.

Форма, площадь и длительность М-ответа

В норме М-ответ представляет собой негативно-позитивное колебание сигнала. Длительность М -ответа измеряют по длительности негативной фазы, площадь

М-ответа также измеряют по площади негативной фазы. Самостоятельного диагностического значения показатели площади и длительности М -ответа не имеют, но в совокупности с анализом его амплитуды и формы можно судить о процессах формирования М -ответа.

При демиелинизации нервных волокон происходит десинхронизация М -ответа с увеличением его длительности и снижением амплитуды, причём в проксимальных точках десинхронизация увеличивается.

Блок проведения возбуждения

Блоком проведения возбуждения называют декремент амплитуды М -ответа при стимуляции в двух соседних точках более 25% (рассчитывают как отношение амплитуды А1:А2, выраженной в про центах, где А1 - амплитуда М-ответа в одной точке стимуляции, А2 - амплитуда М -ответа в следующей, более проксимальной точке стимуляции). При этом увеличение длительности негативной фазы М-ответа не должно превышать 15%.

В основе патогенеза блока про ведения возбуждения лежит стойкий локальный очаг демиелинизации (не более 1 см) , вызывающий нарушение про ведения импульса. Классическим примером блоков про ведения возбуждения являются туннельные синдромы.

Известны два заболевания со множественными стойкими блоками про ведения возбуждения - моторно-сенсорная мультифокальная полиневропатия (СамнераЛьюиса) и мультифокальная моторная невропатия с блоками проведения возбуждения.

Правильная диагностика мультифокальной моторной невропатии крайне важна, так как заболевание клинически имитирует БАС, что часто приводит к серьёзным диагностическим ошибкам.

Адекватным методом, позволяющим выявить блоки проведения возбуждения при мультифокальной моторной невропатии, является метод пошагового исследования нерва - "инчинг" , заключающийся в стимуляции нерва в нескольких точках с шагом 1-2 см. Расположение блоков про ведения возбуждения при мультифокальной моторной невропатии не должно совпадать с местами сдавления нервов при типичных туннельных синдромах.

Порог вызывания М-ответа

Порогом вызывания М -ответа называют интенсивность стимула, при которой появляется минимальный М-ответ. Обычно М-ответ с нервов рук начинает регистрироваться при амплитуде стимула 15 мА и длительности 200 мкс, с ног - 20 мА и 200 мкс соответственно.

Для демиелинизирующих полиневропатий, особенно для наследственных форм, при которых начальный М -ответ может появляться при интенсивности стимула 100 мА и 200 мкс, характерно повышение порога вызывания М -ответов. Низкие пороги стимуляции наблюдают у детей, у худых пациентов (3-4 мА). Изменения порогов вызывания М -ответов не должны рассматриваться как самостоятельный диагностический критерий - оценивать их необходимо в совокупности с другими изменениями.

Скорость распространения возбуждения по моторным волокнам и латентность М-ответа

СРВ определяют как расстояние, которое проходит импульс по нервному волокну за единицу времени, и выражают в метрах в секунду (м/с) . Время между подачей электрического стимула и началом М -ответа называется латентностью М-ответа.

СРВ снижается при демиелинизации (например, при демиелинизирующих полиневропатиях) , так как на участках разрушения миелиновой оболочки импульс распространяется не сальтаторно, а последовательно, как в безмиелиновых волокнах, что вызывает увеличение латентности М -ответа.

Латентность М -ответа зависит от расстояния между стимулирующим и отводящим электродом, поэтому при стимуляции в стандартных точках латентность зависит от роста пациента. Вычисление СРВ позволяет избежать зависимости результатов исследования от роста пациента.

СРВ на участке нерва вычисляют путём деления расстояния между точками стимуляции на разность латентностей М-ответов в этих точках: V = (D 2 - D 1)/ (L 2 - L 1), где V - скорость проведения по двигательным волокнам; D 2 - дистанция для второй точки стимуляции (расстояние между катодом стимулирующего электрода и активным отводящим электродом) ; D 1 - дистанция для второй точки стимуляции (расстояние между катодом стимулирующего электрода и активным отводящим электродом) ; D 2 - D 1 отражает расстояние между точками стимуляции; L 1 - латентность в первой точке стимуляции; L 2 - латентность во второй точке стимуляции.

Снижение СРВ является маркёром процесса полной или сегментарной демиелинизации нервных волокон при невритах, полиневропатиях, таких как острая и хроническая демиелинизирующие полиневропатии, наследственные полиневропатии (болезнь Шарко-Мари-Тус, кроме её аксональных форм), диабетическая полиневропатия, компрессия нерва (туннельные синдромы, травмы) . Определение СРВ позволяет выяснить, на каком участке нерва (дистальном, среднем или проксимальном) имеют место патологические изменения.

Резидуальная латентность

Резидуальной латентностью называют рассчитываемое время прохождения импульса по терминалям аксонов. На дистальном отрезке аксоны двигательных волокон ветвятся на терминали. Так как терминал и не имеют миелиновой оболочки, СРВ по ним значительно ниже, чем по миелинизированным волокнам. Время между стимулом и началом М-ответа при стимуляции в дистальной точке складывается из времени прохождения по миелинизированным волокнам и времени прохождения по терминалям аксона.

Чтобы вычислить время прохождения импульса по терминалям, нужно из дистальной латентности в первой точке стимуляции вычесть время прохождения импульса по миелинизированной части. Это время можно рассчитать, приняв допущение, что СРВ на дистальном участке приблизительно равна СРВ на сегменте между первой и второй точками стимуляции.

Формула расчёта резидуальной латентности: R = L - (D:V l-2), где R - резидуальная латентность; L - дистальная латентность (время от стимула до начала М-ответа при стимуляции в дистальной точке); D - дистанция (расстояние между активным отводящим электродом и катодом стимулирующего электрода) ; V l-2 - СРВ на сегменте между первой и второй точками стимуляции.

Изолированное увеличение резидуальной латентности на одном из нервов считают признаком туннельных синдромов. Наиболее частый туннельный синдром для срединного нерва - запястный туннельный синдром; для локтевого - синдром канала Гийона; для большеберцового - тарзальный туннельный синдром; для малоберцового - сдавление на уровне тыла стопы.

Увеличение резидуальных латентностей на всех исследуемых нервах характерно для невропатий демиелинизирующего типа.

Критерии нормальных значений

В клинической практике удобно использовать нижние границы нормы для амплитуды М -ответа и СРВ и верхние границы нормы для резидуальной латентности и порога вызывания М-ответа (табл. 8-1).

Таблица 8- 1 . Нормальные значения пара метров исследования проводящей функции моторных нервов

В норме амплитуда М -ответа несколько выше в дистальных точках стимуляции, в проксимальных точках М -ответ несколько растягивается и десинхронизируется, что приводит к не которому увеличению его длительности и снижению амплитуды (не более чем на 15%). СРВ по нервам немного выше в проксимальных точках стимуляци

Снижение СРВ, амплитуды и десинхронизация (увеличение длительности) М -ответа свидетельствуют о поражении нерва. Исследование СРВ по двигательным волокнам позволяет подтвердить или опровергнуть диагноз и провести дифференциальную диагностику при таких заболеваниях, как туннельные синдромы, аксональные и демиелинизирующие полиневропатии, мононевропатии, наследственные полиневропатии.

Электромиографические критерии поражения нерва демиелинuзирующего характера

Классические примеры демиелинизирующих невропатий - острая и хроническая воспалительные демиелинизирующие полиневропатии (ХВДП) , диспротеинемические невропатии, наследственная моторно-сенсорная невропатия (НМСН) 1 типа.

Основные критерии демиелинизирующих полиневропатий:

  • увеличение длительности и полифазия М -ответа при нормальной амплитуде
  • снижение СРВ по моторным и сенсорным аксонам периферических нервов;
  • "рассыпной" характер F-волн;
  • наличие блоков проведения возбуждения.

Электромиоzрафи"lеские критерии поражения нерва аксональноzо характера Классическими при мерами аксональных невропатий считают большинство токсических (в том числе и лекарственных) невропатий. НМСН 11 типа (аксональный тип болезни Шарко-Мари-Тус) .

Основные критерии аксональных полиневропатий:

  • снижение амплитуды М -ответа;
  • нормальные значения СРВ по моторным и сенсорным аксонам периферических нервов;

При сочетании демиелинизирующих и аксональных признаков констатируют аксонально-демиелинизирующий тип поражения. Наиболее резкое снижение СРВ по периферическим нервам наблюдают при наследственных полиневропатиях.

При синдроме Русси-Леви СРВ может снижаться до 7-10 м/с. при болезни Шарко-Мари-Тус - до 15-20 м/с. При приобретённых полиневропатиях степень снижения СРВ различна в зависимости от характера заболевания и степени патологии нервов. Наиболее выраженное снижение скоростей (до 40 м/с на нервах верхних конечностей и до 30 м/с на нервах нижних конечностей) наблюдают при демиелинизирующих полиневропатиях. при которых процессы демиелинизации нервного волокна превалируют над поражением аксона: при хронической демиелинизирующей и острой демиелинизирующей полиневропатии (СГБ. синдром Миллера-Фишера).

Для преимущественно аксональных полиневропатий (например. токсических: уремической. алкогольной. диабетической. лекарственной и др.) характерна нормальная или незначительно сниженная СРВ при резко выраженном снижении амплитуды М -ответа. Чтобы установить диагноз полиневропатии. необходимо исследовать не менее трёх нервов. однако на практике нередко приходится исследовать большее количество (шесть и более) нервов.

Увеличение длительности М -ответа служит дополнительным доказательством демиелинизирующих процессов в исследуемом нерве. Наличие блоков про ведения возбуждения характерно для туннельных синдромов. а также для мультифокальной моторной невропатии с блоками про ведения возбуждения.

Изолированное поражение одного нерва позволяет думать о мононевропатии. в том числе о туннельном синдроме. При радикулопатиях в начальных стадиях проводящая функция моторных нервов часто остаётся сохранной. При отсутствии адекватного лечения в течение 2-3 мес постепенно снижается амплитуда М -ответа. может повыситься порог его вызывания при сохранной СРВ.

Снижение амплитуды М-ответа при прочих абсолютно нормальных показателях требует расширить диагностический поиск и рассмотреть возможность мышечного заболевания или заболевания мотонейронов спинного мозга. что можно подтвердить с помощью игольчатой ЭМГ.

Исследование проводящей функции сенсорных нервов

СРВ п о сенсорным волокнам определяют с помощью регистрации потенциала действия афферентного (чувствительного) нерва в ответ на его чрескожную электрическую стимуляцию. Методики регистрации СРВ по сенсорным и двигательным волокнам имеют много общего. в то же время между ними существует важное патофизиологическое различие: при исследовании моторных волокон регистрируют рефлекторный ответ мышцы. а при исследовании сенсорных волокон - потенциал возбуждения чувствительного нерва.

Существуют два способа про ведения исследования: ортодромный. при котором стимулируют дистальные отделы нерва. а сигналы регистрируют в проксимальных точках. и антидромный. при котором регистрацию про водят дистальнее точки стимуляции. В клинической практике чаще используется антидромный способ как более простой. хотя и менее точный.

Методика

Положение больного, температурный режим, используемые электроды аналогичны таковым при исследовании функции моторных волокон. Можно использовать и специальные пальцевые электроды для исследования сенсорных волокон. При регистрации с нервов рук активный электрод накладывают на проксимальную фалангу II или III (для срединного нерва) либо V пальца (для локтевого нерва), референтный электрод располагается на дистальной фаланге того же пальца (рис. 8-3) .

Положение заземляющего и стимулирующего электродов аналогично таковому при исследовании моторных волокон. При регистрации сенсорного ответа икроножного нерва активный электрод располагают на 2 см ниже и на 1 см кзади от латеральной лодыжки, референтный электрод - на 3-5 см дистальнее, стимулирующий электрод - по ходу икроножного нерва на заднелатеральной поверхности голени. При правильном расположении стимулирующего электрода больной ощущает иррадиацию электрического импульса по латеральной поверхности стопы.

Заземляющий электрод располагается на голени дистальнее стимулирующего. Сенсорный ответ значительно ниже по амплитуде (для локтевого нерва - 6-30 мкВ, в то время как моторный ответ - 6-16 мВ) . Порог возбуждения толстых чувствительных волокон ниже, чем более тонких моторных, поэтому используют стимулы субпороговой (по отношению к моторным волокнам) интенсивности.

Наиболее часто исследуют срединный, локтевой, икроножный, реже - лучевой нерв.

Наиболее значимые для клинической практики параметры:

  • амплитуда сенсорного ответа;
  • СРВ по сенсорным волокнам, латентность.

Амплитуда сенсорного ответа

Амплитуду сенсорного ответа измеряют по методу "пик-пик" (максимум негативной - минимум позитивной фазы). Нарушение функции аксона характеризуется снижением амплитуды сенсорного ответа либо его полным выпадением.

Скорость распространения возбуждения и латентность

Как и при исследовании моторных волокон, латентность измеряют от артефакта стимула до начала ответа. СРВ рассчитывают так же, как и при исследовании моторных волокон. Снижение СРВ указывает на демиелинизацию.

Нормальные значения

В клинической практике удобно анализировать результаты относительно нижней границы нормальных значений (табл. 8-2).

Таблица 8-2. Нижние границы нормальных значений амплитуды и СРВ сенсорного ответа

Клиническая значимость анализируемых показателей

Как и при исследовании моторных волокон, снижение СРВ характерно для демиелинизирующих, а снижение амплитуды - для аксональных процессов. При выраженной гипестезии сенсорный ответ иногда зарегистрировать не удаётся.

Сенсорные нарушения выявляют при туннельных синдромах, моно- и полиневропатиях, радикулопатиях и др. Например, для запястного туннельного синдрома характерным считают изолированное снижение дистальной СРВ по срединному сенсорному нерву при нормальной скорости на уровне предплечья и по локтевому нерву. При этом в начальных стадиях СРВ снижается, но амплитуда остаётся в пределах нормы. При отсутствии адекватного лечения амплитуда сенсорного ответа также начинает снижаться. Для сдавления локтевого нерва в канале Гийона характерно изолированное снижение дистальной скорости по сенсорным волокнам локтевого нерва. Генерализованное снижение СРВ по сенсорным нервам характерно для сенсорной полиневропатии. Часто оно сочетается со снижением амплитуды сенсорного ответа. Равномерное уменьшение СРВ ниже 30 м/с характерно для наследственных полиневропатий.

Наличие анестезии/гипестезии при нормальной про водящей функции сенсорных волокон позволяет заподозрить более высокий уровень поражения (корешковый или центральный генез) . В этом случае уточнить уровень сенсорных нарушений можно с помощью соматосенсорных вызванных потенциалов (ССВП).

Исследование F-волны

F-волна (F-ответ) - суммарный потенциал действия ДЕ мышцы, возникающий при электрическом раздражении смешанного нерва. Наиболее часто F-волны анализируют при исследовании срединного, локтевого, малоберцового, большеберцового нервов.

Методика

Во многом техника регистрации аналогична таковой при исследовании проводящей функции моторных волокон. В процессе исследования моторных волокон после регистрации М -ответа в дистальной точке стимуляции исследователь переключается в приложение регистрации F-волны, при тех же параметрах стимула записывает F-волны, после чего продолжает исследование моторных волокон в остальных точках стимуляции.

F-волна имеет небольшую амплитуду (обычно до 500 мкВ). При стимуляции периферического нерва в дистальной точке на экране монитора появляется М-ответ с латентностью 3-7 мс, F-отвеr имеет латентность около 26-30 мс для нервов рук и около 48-55 мс для нервов ног (рис. 8-4) . Стандартное исследование включает в себя регистрацию 20 F-волн.

Диагностически значимые показатели F-волны:

  • латентность (минимальная, максимальная и средняя);
  • диапазон скоростей распространения F-волн;
  • феномен "рассыпанных" F-волн;
  • амплитуда F-волны (минимальная и максимальная) ;
  • отношение средней амплитуды F -волны к амплитуде М-ответа, феномен "гигантских F-волн" ;
  • блоки (про цент выпадения) F-волн, то есть количество стимулов, оставшихся без F-ответа;
  • повторные F-волны.

Латентность, диапазон скоростей распространения F-волн, "рассыпанные " F-волны

Латентность измеряют от артефакта стимула до начала F-волны. поскольку латентность зависит от длины конечности, удобно пользоваться диапазоном скоростей распространения F-волн. Расширение диапазона скоростей в сторону низких величин указывает на замедление проведения по отдельным нервным волокнам, что может являться ранним признаком демиелинизирующего процесса.

При этом часть F-волн может иметь нормальную латентность.

Расчёт СРВ по F-волне: V = 2 х D: (LF - LM - 1 мс), где V - СРВ, определённая с помощью F-волны; D - дистанция, измеряемая от точки под катодом стимулирующего электрода до остистого отростка соответствующего позвонка; LF - латентность F-волны; LM - латентность М-ответа; 1 мс - время центральной задержки импульса.

При выраженном демиелинизирующем процессе часто выявляют феномен "рассыпанных" F-волн (рис. 8-5), а в самых поздних стадиях возможно полное их выпадение. Причиной "рассыпанных" F-волн считают наличие множественных очагов демиелинизации по ходу нерва, которые могут стать своего рода "отражателями" импульса.

Доходя до очага демиелинизации, импульс не распространяется дальше антидромно, а отражается и ортодромно распространяется к мышце, вызывая сокращение мышечных волокон. Феномен "рассыпанных" F-волн является маркёром невритического уровня поражения и практически не встречается при нейрональных или первично-мышечных заболеваниях.

Рис. 8-4. Регистрация F-волны с локтевого нерва здорового человека. М-ответ зарегистрирован при усилении 2 мВ/Д, его амплитуда - 1 0,2 мВ, латентность - 2,0 мс; F-волны зарегистрированы при усилении 500 мкВ/д, средняя латентность составляет 29,5 мс (28, 1 -32,0 мс), амплитуда - 297 мкВ (67-729 мкВ), СРВ, определённая методом F-волн, - 46,9 м/с, диапазон скоростей - 42,8-49,4 м/с.


Рис. 8-5. Феномен "рассыпанных" F-волн. Исследование проводящей функции малоберцоваго нерва у больного 54 года с диабетической полиневропатией. Разрешение области М-ответа - 1 мВ/Д, области F-волн - 500 мкВ/д, развёртка - 1 0 мс/д. Определить диапазон СРВ в данном случае не представляется возможным.

Амплитуда F-волн, феномен "гигантских" F-волн

В норме амплитуда F-волны составляет менее 5% амплитуды М-ответа в данной мышце. Обычно амплитуда F-волны не превышает 500 мкВ. Амплитуду F-волн измеряют "от пика до пика" . При реиннервации F-волны укрупняются. Диагностически значимым считают отношение средней амплитуды F-волны к амплитуде М-ответа. Повышение амплитуды F-волны более чем на 5% амплитуды М-ответа (крупные F-волны) указывает на процесс реиннервации в мышце.

Диагностическую значимость имеет также появление так называемых гигантских F-волн амплитудой более 1000 мкВ, отражающих степень выраженной реиннервации в мышце. "Гигантские" F-волны чаще всего наблюдают при заболеваниях мотонейронов спинного мозга (рис. 8-6), хотя они могут появляться и при невральной патологии, протекающей с выраженной реиннервациеЙ.

Выпадение F-волн

Выпадением F-волны называют её отсутствие на линии регистрации. Причиной выпадения F-волны может быть поражение как нерва, так и мотонеЙрона. В норме допустимо выпадение 5-10% F-волн. Полное выпадение F-волн свидетельствует о наличии выраженной патологии (в частности, оно возможно в поздних стадиях заболеваний при выраженных мышечных атрофиях) .

Рис. 8-6. "Гигантские" F-волны. Исследование локтевого нерва больного (48 лет) с БАС. Разрешение области М-ответа - 2 мВ/д, области F-волн - 500 мкВ/д, развёртка - 1 мс/д. Средняя амплитуда F-волн составляет 1 084 мкВ (43-2606 мкВ). Диапазон скоростей в норме (71 -77 м/с).

Повторные F-волны

В норме вероятность ответа одного и того же мотонейрона крайне мала. При уменьшении количества мотонейронов и изменении их возбудимости (одни мотонейроны становятся гипервозбудимыми, другие, наоборот, отвечают только на сильные раздражители) существует вероятность, что один и тот же нейрон будет отвечать многократно, поэтому появляются F-волны одинаковой латентности, формы и амплитуды, называемые повторными. Второй причиной появления повторных F-волн является повышение мышечного тонуса.

Нормальные значения

у здорового человека принято считать допустимым, если появляется до 10% выпадений, "гигантских" И повторных F-волн. При определении диапазона скоростей минимальная скорость не должна быть ниже 40 м/с для нервов рук и 30 м/с для нервов ног (табл. 8-3). "Рассыпанных" F-волн и полного выпадения F-волн в норме не наблюдают.

Таблица 8-3. Нормальные значения амплитуды и скорости распространения F-волн

Нормальные значения минимальных латентностей F-волн в зависимости от роста пред ставлены в табл. 8-4.

Таблица 8-4. Нормальные значения латентности F-волн, МС

Клиническая значимость

Расширение диапазона ерв, определяемой методом F-волн, и, соответственно, удлинение латентностей F-волн, феномен "рассыпанных" F-волн позволяют предположить наличие демиелинизирующего процесса.

При острой демиелинизирующей полиневропатии, как правило, обнаруживают лишь нарушение проведения F-волн, при хронической - F-волны могут отсутствовать (блоки F-волн). Частые повторные F-волны наблюдают при поражении мотонейронов спинного мозга. Особенно характерным для заболеваний мотонейронов является сочетание "гигантских" повторных F-волн и их выпадений.

Ещё один признак поражения мотонейронов - появление большого количества "гигантских" F-волн. Наличие крупных F-волн указывает на наличие реиннервационного процесс а в мышце.

Несмотря на высокую чувствительность F-волн, этот метод можно использовать только в качестве дополнительного (в совокупности с данными исследования про водящей функции периферических нервов и игольчатой ЭМГ) .

Исследование Н-рефлекса

Н-рефлекс (Н-ответ) - суммарный потенциал действия ДЕ мышцы, возникающий при слабом раздражении электрическим током афферентных нервных волокон, идущих из этой мышцы.

Возбуждение передаётся по афферентным волокнам нерва через задние корешки Спинного мозга на вставочный нейрон и на мотонейрон, а затем через передние корешки по эфферентным нервным волокнам на мышцу.

Анализируемые показатели Н-ответа : порог вызывания, форма, отношение амплитуды Н-рефлекса к М-ответу, латентный период или скорость его рефлекторного ответа.

Клиническая значимость . При поражении пирамидных нейронов порог вызывания Н-ответа снижается, а амплитуда рефлекторного ответа резко повышается.

Причиной отсутствия или снижения амплитуды Н -ответа могут быть патологические изменения в переднероговых структурах спинного мозга, афферентных или эфферентных нервных волокнах, задних или передних спинальных корешках нервов.

Исследование мигательного рефлекса

Мигательный (орбикулярный, тригеминофациальный) рефлекс - суммарный потенциал действия, возникающий в обследуемой мышце лица (например, т. orbicularis ocu li ) при электрическом раздражении афферентных нервных волокон одной из ветвей n. trigem eni - I , II или III. Как правило, регистрируют два вызванных рефлекторных ответа: первый - с латентным периодом около 12 мс (моносинаптический, аналог Н-рефлекса), второй - с латентным периодом около 34 мс (экстероцептивный, с полисинаптическим распространением возбуждения в ответ на раздражение).

При нормальной СРВ по лицевому нерву увеличение времени рефлекторного мигательного ответа по одной из ветвей нерва указывает на её поражение, а его увеличение по всем трём ветвям нерва свидетельствует о поражении его узла или ядра. С помощью исследования можно провести дифференциальную диагностику между повреждением лицевого нерва в костном канале (в этом случае рефлекторный мигательный ответ будет отсутствовать) и его поражением после выхода из шилососцевидного отверстия.

Исследование бульбокавернозного рефлекса

Бульбокавернозный рефлекс - суммарный потенциал действия, возникающий в обследуемой мышце промежности при электрическом раздражении афферентных нервных волокон n. pudendus.

Рефлекторная дуга бульбокавернозного рефлекса проходит через крестцовые сегменты спинного мозга на уровне S 1 -S 4 , афферентные и эфферентные волокна находятся в стволе полового нерва. При исследовании функции рефлекторной дуги можно получить представление о спинальном уровне иннервации сфинктеров, мышц промежности, а также выявить расстройства регуляции половой функции у мужчин. Исследование бульбокавернозного рефлекса применяют у больных, страдающих половой дисфункцией и тазовыми расстройствами.

Исследование вызванного кожного симпатического потенциала

Исследование ВКСП проводят с любого участка тела, на котором присутствуют потовые железы. Как правило, регистрацию ВКСП проводят с ладонной поверхности кисти, подошвенной поверхности стопы или урогенитальной области. В качестве раздражения используется электрический стимул. Оценивают СРВ по вегетативным волокнам и амплитуду ВКСП. Исследование ВКСП позволяет определить степень поражения вегетативных волокон. Анализируют миелинизированные и немиелинизированные вегетативные волокна.

Показания. Вегетативные расстройства, связанные с нарушением сердечного ритма, потоотделения, АД а также сфинктерные нарушения, расстройство эрекции и эякуляции.

Нормальные показатели ВКСП. Ладонная поверхность: латентность - 1,3- 1,65 мс; амплитуда - 228-900 мкВ; подошвенная поверхность - латентность 1,7-2,21 мс; амплитуда 60-800 мкВ.

Интерпретация результатов. СРВ и амплитуда ВКСП при поражении симпатических волокон снижены. При некоторых невропатиях формируются симптомы, связанные с поражением миелинизированных и немиелинизированных вегетативных волокон. В основе этих расстройств лежит поражение вегетативных ганглиев (например, при диабетической полиневропатии) , гибель немиелинизированных аксонов периферических нервов, а также волокон блуждающего нерва. Нарушения потоотделения, сердечного ритма, АД, мочеполовой системы - наиболее частые вегетативные расстройства при различных полиневропатиях.

Исследование нервно-мышечной передачи (декремент-тест)

Нарушения синаптической передачи могут быть обусловлены пресинаптическими и постсинаптическими процессами (повреждение механизмов синтеза медиатора и его выделения, нарушение его действия на постсинаптическую мембрану и т.п.). Декремент-тест - электрофизиологический метод, с помощью которого оценивают состояние нервно-мышечной передачи, основанный на том, что в ответ на ритмическую стимуляцию нерва выявляют феномен снижения амплитуды М-ответа (её декремента).

Исследование позволяет определить тип нарушения нервно-мышечной передачи, оценить тяжесть поражения и его обратимость в процессе фармакологических тестов [проба с неостигмина метилсульфатом (прозерином)] , а также эффективность лечения.

Показания : подозрение на миастению и миастенические синдромы.

Многообразие клинических форм миастении, её частая сочетаемость с тиреоидитом, опухолями, полимиозитом и другими аутоиммунными процессами, широкие вариации эффективности применения одних и тех же вмешательств у различных больных делают этот метод обследования чрезвычайно важным в системе функциональной диагностики.

Методика

Положение пациента, температурный режим и принципы наложения электродов аналогичны таковым при исследовании проводящей функции моторных нервов.

Исследование нервно-мышечной передачи проводят в клинически более слабой мышце, так как в интактной мышце нарушение нервно-мышечной передачи либо отсутствует, либо выражено минимально. При необходимости декремент-тест можно выполнить в различных мышцах верхних и нижних конечностей, лица и туловища, однако на практике исследование чаще всего про водится в дельтовидной мышце (стимуляция подмышечного нерва в точке Эрба). Если сила в дельтовидной мышце сохранна (5 баллов), но присутствует слабость мимической мускулатуры, необходимо тестировать круговую мышцу глаза. При необходимости декремент- тест выполняют в мышце, отводящей мизинец кисти, трёхглавой мышце плеча, двубрюшной мышце и др.

В начале исследования, чтобы установить оптимальные параметры стимуляции, стандартным способом регистрируют М -ответ выбранной мышцы. Затем проводят непрямую электрическую низкочастотную стимуляцию нерва, иннервирующего исследуемую мышцу, с частотой 3 Гц. Используют пять стимулов и в последующем оценивают наличие декремента амплитуды последнего М -ответа по отношению к первому.

После выполнения стандартного декремент-теста про водят пробы с оценкой постактивационного облегчения и постактивационного истощения.

Интерпретация результатов

При ЭМГ обследовании у здорового человека стимуляция частотой 3 Гц не выявляет декремента амплитуды (площади) М-ответа мышцы вследствие большого запаса надёжности нервно-мышечной передачи, то есть амплитуда суммарного потенциала остаётся стабильной в течение всего периода стимуляции.

Рис. 8-7. Декремент-тест: исследование нервно-мышечной передачи у больной (27 лет) с миастенией (генерализованная форма). Ритмическая стимуляция подмышечного нерва с частотой 3 Гц, регистрация с дельтовидной мышцы (сила мышцы 3 балла). Разрешение - 1 мВ/д, развёртка - 1 мс/д. Исходная амплитуда М-ответа 6 , 2 мВ (норма более 4,5 м В) .

Если уменьшается надёжность нервно-мышечной передачи, выключение мышечных волокон из суммарного М -ответа проявляется снижением амплитуды (площади) последующих М-ответов в серии импульсов по отношению к первому, то есть декрементом М-ответа (рис. 8-7) . Для миастении характерен декремент амплитуды М-ответа более 10% при его нормальной исходной амплитуде. Декремент обычно соответствует степени снижения мышечной силы: при силе 4 балла он составляет 15-20%, 3 балла - 50%, 1 балл - до 90%. Если при силе мышцы 2 балла декремент незначителен (12- 15%) , диагноз миастении нужно поставить под сомнение.

Для миастении также типична обратимость нарушений нервно-мышечной передачи: после введения неостигмина метилсульфата (прозерина) отмечают увеличение амплитуды М-ответа и/или уменьшение блока нервно-мышечной передачи.

Выраженное повышение амплитуды М -ответа в период постактивационного облегчения позволяет заподозрить пресинаптический уровень поражения, в данном случае про водят пробу с тетанизацией (стимуляция серией из 200 стимулов частотой 40-50 Гц) в мышце, отводящей мизинец кисти, которая выявляет инкремент амплитуды М-ответа. Инкремент амплитуды М-ответа более +30% патогномоничен для пресинаптического уровня поражения.

Уровень нарушения проведения, риск прогресси-рования до полной АВ-блокады, а также вероят­ность того, что латентные водители ритма будут способны поддерживать стабильный и адекват­ный замещающий ритм (ЧСС > 40/мин). В отсут­ствие активности более проксимальных водите­лей ритма их функцию может взять на себя пучок Гиса. В норме пучок Гиса - самый дистальный участок проводящей системы, который способен поддерживать стабильный ритм (обычно ЧСС 40-60/мин). Если роль водителя ритма выполня­ет пучок Гиса и нарушений внутрижелудочкового проведения нет, то комплексы QRS имеют нор­мальную конфигурацию. Если водителем ритма является дистальный участок системы Гиса-Пуркинье, то ритм часто нестабильный и ЧСС < 40/мин, что приводит к появлению широких комплексов QRS.

Какова значимость изолированной

Блокады ножки пучка Гиса

При нормальном интервале PQ?

Задержка проведения, или блокада правой ножки пучка Гиса, проявляется типичной картиной на ЭКГ: в отведении V 1 комплекс QRS имеет М-об-разную конфигурацию или вид rSR"; причины -


врожденная патология, органические поражения сердца. Задержка проведения, или блокада левой ножки пучка Гиса, тоже проявляется типичной картиной на ЭКГ: широкий зубец R с пологим вос­ходящим коленом в отведении V 5 ; практически все­гда наблюдается при органическом заболевании сердца. Иногда имеется блокада только одной из двух ветвей левой ножки пучка Гиса - передней или задней. Если интервал PQ не увеличен и ост­рого инфаркта миокарда нет, то блокада левой или правой ножки пучка Гиса редко вызывает полную АВ-блокаду.

Всегда ли можно определить по ЭКГ в 12 отведениях уровень АВ-блокады?

Нет. АВ-блокада 1-й степени (интервал PR > 200 mc) может отражать нарушение проводимости в лю­бом месте между предсердиями и дистальными участками системы Гиса-Пуркинье. АВ-блокада 2-й степени типа Мобитц I характеризуется нарас­тающим удлинением интервала PQ вплоть до вы­падения комплекса QRS; наиболее вероятный уро­вень - АВ-узел. Как правило, этот вид блокады не переходит в полную АВ-блокаду.

При АВ-блокаде 2-й степени типа Мобитц II наблюдается периодическое выпадение комплек­сов QRS; интервалы PR одинаковы. Уровень бло­кады - пучок Гиса или дистальные участки систе­мы Гиса-Пуркинье. Высок риск прогрессировавши до полной АВ-блокады, особенно на фоне острого переднеперегородочного инфаркта миокарда. Комплексы QRS чаще всего широкие.

При полной АВ-блокаде предсердия и же­лудочки возбуждаются независимо друг от друга (АВ-диссоциация), поскольку импульсы из пред­сердий никогда не передаются на желудочки. Бло­када на уровне АВ-узла сопровождается стабиль­ным замещающим ритмом из пучка Гиса с узкими комплексами QRS; после введения атропина ЧСС часто возрастает. Блокада на уровне пучка Гиса со­провождается замещающим ритмом из дисталь­ных волокон системы Гиса-Пуркинье с широкими комплексами QRS. Широкие комплексы QRS мо­гут также наблюдаться при нормальном проведе­нии по пучку Гиса, отражая более дистальную бло­каду одной из ножек пучка Гиса.

Может ли возникнуть АВ-диссоциация в отсутствие АВ-блокады?

Да. АВ-диссоциация в отсутствие АВ-блокады час­то возникает во время ингаляционной анестезии в результате синусовой брадикардии или ускорен­ного АВ-узлового ритма. При изоритмической


АВ-диссоциации предсердия и желудочки сокра­щаются независимо друг от друга, но почти с оди­наковой частотой. При этом зубец P нередко не­посредственно предшествует комплексу QRS или следует сразу за ним. Напротив, интерференцион­ная АВ-диссоциация возникает при АВ-узловом ритме, частота которого выше синусового, поэтому импульсы из синусового узла всегда попадают на АВ-узел в период его рефрактерности.

Как проявляются двухпучковые итрехпучковые блокады?

Существует три ветви пучка Гиса - правая ножка, передняя ветвь левой ножки и задняя ветвь левой ножки. При полной или частичной блокаде двух из них говорят о двухпучковой блокаде. Если одна ветвь блокирована полностью, а две других - час­тично, то блокада одной из ветвей пучка Гиса будет сочетаться с АВ-блокадой 1-й или 2-й степени. Если нарушено проведение по всем трем ветвям, то имеется трехпучковая блокада. Задержка проведе­ния или частичная блокада во всех трех пучках приводит к удлинению интервала PQ (АВ-блокада 1-й степени) либо к альтернирующей блокаде ле­вой и правой ножки пучка Гиса. Полная трехпучко­вая блокада служит причиной полной АВ-блокады.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13

Р. К. Григгс, У. Г. Брэдли, Б. Т. Шахани (R . С. Griggs , W . С. Bradley , и. Т. Shahani )

Стимулирование достаточно больших моторных и чувствительных нервов позволяет регистрировать их потенциалы действия и получать объективные количественные данные относительно латентного периода и скорости проведения импульса по нерву. Методика основана на стимулировании нерва поверхностными электродами, помещаемыми на кожу над исследуемым нервом. В результате электроды регистрируют составной потенциал действия в нерве, расположенном проксимально (при исследовании больших сенсорных волокон) или над мышцей, расположенной дистально (в случае исследования моторных волокон в смешанном двигательно-чувствительном нерве). Время проведения импульса от наиболее дистально расположенного стимулируемого электрода, измеренное в миллисекундах, с момента стимуляционного воздействия до начала ответной реакции, получило название дистального, или периферического латентного, времени. Если второй стимул наносится на смешанный нерв более проксимально (или если регистрирующие электроды расположены более проксимально в случае исследования чувствительных волокон), то можно измерить новое и более продолжительное время проведения. Если расстояние (в миллиметрах) между двумя участками стимуляции двигательных волокон или регистрации с чувствительных волокон разделить на разницу показателей времени проведения (в миллисекундах), можно получить максимальную скорость проведения (в метрах в секунду). Она показывает скорость распространения потенциалов действия в наиболее крупных и наиболее быстро проводящих импульс нервных волокнах. Показатели этих скоростей у здоровых лиц колеблются довольно значительно - от 40-45 м/с (в зависимости от исследуемого нерва) до 75-80 м/с. У новорожденный эти значения несколько ниже (они составляют примерно 1/2 от показателей взрослых), но достигают данного уровня к 3-4 годам жизни. Получены показатели нормы периферических латентных периодов для наиболее дистальных участков различных смешанных нервов, иннервирующих соответствующие мышцы. Например, когда стимулируют срединный нерв у запястья, латентный период для проведения импульса через канал запястья к короткой отводящей мышце большого пальца у здоровых лиц составляет менее 4,5 м/с. Составлены специальные таблицы с подобными нормативами для скорости проведения и дистальных латентных периодов, показатели которых колеблются в зависимости от расстояния. Во время исследования нервной проводимости очень важно поддерживать нормальную температуру тела человека, так как при субнормальной температуре скорость проведения по нерву замедляется. Скорость проведения по нерву зависит от диаметра нервного волокна и степени его демиелинизации. Немиелинизированные нервные волокна малого диаметра характеризуются меньшей скоростью проведения, чем миелинизированные волокна большого диаметра. У волокон с сегментарной демиелинизацией скорость проведения, как правило, уменьшена. При стимулировании моторных волокон периферического нерва при условии, что каждое нервное волокно находится в функциональном единении с иннервируемыми им многочисленными мышечными волокнами, с кожного электрода над исследуемой мышцей можно зарегистрировать составной мышечный потенциал действия, являющийся результатом импульсных разрядов многих мышечных волокон. Сенсорные потенциалы действия, регистрируемые непосредственно с самих нервных волокон, не обладают качеством «амплификации», создаваемым мышечными волокнами; дело в том, что для этого требуется большая электронная амплификация. В случае патологии нервов сенсорные потенциалы могут быть небольшими или их может не быть вообще, и, таким образом, зарегистрировать сенсорную проводимость становится невозможно. Напротив, достаточно надежно измерить скорость моторной проводимости возможно, даже если сохранным осталось лишь одно мышечное волокно. Измерения скорости нервной проводимости отражают состояние наиболее хорошо сохранившихся нервных волокон, и, если непораженным осталось лишь небольшое число нервных волокон, показатели нервной проводимости могут быть нормальными, несмотря на довольно распространенную нервную дегенерацию. После неполного пересечения нерва острым предметом в небольшом числе оставшихся нервных волокон максимальная скорость моторного проведения может сохраниться, хотя мышца, вовлеченная в патологический процесс, почти полностью парализована. Аксон является первичным очагом поражения при алкогольной, алиментарной, уремической и диабетической невропатиях. По оставшимся неповрежденными аксонам проведение импульсов сохранено, так что, когда поражены более массивные нервные волокна, оставшиеся интактными нервные волокна меньшего диаметра, способные нормально проводить импульс, обеспечивают слегка замедленную скорость максимального моторного проведения. При многих невропатиях скорость нервной проводимости остается нормальной или лишь незначительно снижена. Обычные исследования нервной проводимости осуществляют для того, чтобы подтвердить наличие невропатии.

При этом сравнивают результаты, полученные у испытуемых, с данными нервной проводимости в контрольной группе лиц, подобранной адекватно по возрасту и полу. Хотя многие заболевания периферических нервов не влияют на скорость нервного проведения, тем не менее такие заболевания, как острая идиопатическая полиневропатия (синдром Гийена-Барре), дифтерия, метахроматическая лейкодистрофия и гипертрофические невропатии, вызывают замедление скорости проведения, так как при этом первично поражаются шванновские клетки и наблюдается сегментарная демиелинизация. Очаговые сдавления нерва, как это бывает при синдроме ущемления нерва в костном канале, вызывают локализованное замедление проводимости вследствие сжатия аксонов и демиелинизации в участке ущемления нерва. При обнаружении такого очагового замедления нервной проводимости диагноз ущемления нерва подтверждается. Диагноз сдавления срединного нерва в канале запястья основан на сравнении периферической (терминальной) латентности (латентное время) одного срединного нерва с другим срединным нервом или с локтевым нервом. Однако даже если показатели проводимости при этом нормальны, исключить синдром ущемления нерва нельзя.

Другие методы оценки нервной проводимости. Для изучения нервной проводимости в более проксимальных сегментах осуществляют измерение латентностей для F -реакций, Н-рефлексов и мигательных рефлексов. Эти методы позволяют определить скорость проведения с периферии (конечности, лицо) к центральной нервной системе (спинной мозг или ствол мозга) и обратно. Так, F -реакция определяет время, необходимое для прохождения раздражения, нанесенного на аксон альфа-моторного нейрона, антидромно (т. е. в противоположном направлении) по направлению к переднему рогу спинного мозга и затем возвращение импульса ортодромно, обратно к тому же аксону. Н-рефлекс определяет время, необходимое для ортодромного (в прямом направлении) проведения возбуждения вверх по нерву через чувствительные волокна группы IA через спинномозговую синаптическую связь с альфа-моторным нейроном и затем ортодромно вниз к моторному аксону. Таким образом может быть измерена скорость проведения импульса по проксимальным сенсорным и моторным нервам и корешкам спинномозгового нерва. Использование указанных методик для определения скорости проведения в проксимальных нервах позволило выявить нарушение этого показателя у 80- 90% больных с периферической невропатией. Мигательные рефлексы отражают скорость проведения импульсов по ветвям тройничного и лицевого нервов. Мигательный рефлекс, вызванный электрической стимуляцией супраорбитальных ветвей тройничного нерва, позволяет определить локализацию поражений в системах лицевого и тройничного нервов.

Исследования нервной проводимости, описанные выше, достаточно условны, так же как и исследования запоздалых реакций. Они информативны лишь по отношению к быстро проводящим аксонам большого диаметра, но несут мало информации о характере проведения в промежуточных нервных волокнах и волокнах небольшого диаметра. При использовании физиологических принципов сталкивания нервных импульсов, вызванных стимуляцией в двух разных областях (проксимально и дистально) одного и того же нерва, можно измерить нервную проводимость в моторных аксонах малого диаметра. Патологические скорости нервного проведения в нервных волокнах промежуточного размера наблюдали у некоторых больных с метаболическими и алиментарными невропатиями даже тогда, когда результаты обычных методов исследования нервной проводимости и F -реакции были нормальными.

Тесты с повторной стимуляцией. При патологии нервно-мышечного соединения показатели начального составного мышечного потенциала действия, вызываемого супрамаксимальным электрическим раздражением исследуемого нерва, остаются нормальными, однако после нескольких стимуляций, проводимых со скоростью 2-3 Гц, амплитуда составного мышечного потенциала действия начинает уменьшаться, но после 4-5 раздражений вновь возрастает. Такой характер снижения потенциала, достигающего максимума при 4-5-м раздражении с последующим возрастанием при продолжающихся раздражениях, характерен для миастении. Этот дефект напоминает частичную блокаду, вызываемую кураре, и отражает постсинаптическое нарушение синаптической функции. Дефект этот обратим при применении антихолинэстеразных препаратов, например при внутривенном введении эдрофониума гидрохлорида (Edrophonium hydrochloride ) в дозе 5-10 мг. Прогрессирующее снижение составного мышечного потенциала действия при повторной стимуляции нерва наблюдают при полиомиелите, амиотрофическом боковом склерозе, миотонии и при другой патологии моторной единицы. Однако при этих заболеваниях не регистрируют типичную кривую уменьшения - увеличения величины потенциала, столь характерную для миастении.

При синдроме Ламберта-Итона (миастенический синдром) повторные стимуляции облегчают трансмиссию импульса. Быстрая стимуляция нерва (20-30 Гц) вызывает прогрессирующее увеличение мышечных потенциалов действия, которые очень невелики или вовсе отсутствуют поначалу, при первой стимуляции, но затем амплитуда их увеличивается до нормальных значений. Это облегчение ответной реакции не подвергается воздействию антихолинэстеразных препаратов, но может быть заторможено гуанидин-гидрохлоридом (Guanidine hydrochloride ), назначаемым по 10-30 мг/кг в день дробно. Нервно-мышечный трансмиссионный дефект этого «реверсированного» миастенического синдрома является результатом патологического высвобождения ацетилхолина. Такой же дефект возникает при воздействии ботулинического токсина или при параличе, вызываемом аминогликозидными антибиотиками.

Электромиограмма при патологии центральной нервной системы

Использование ЭМГ и исследований проводимости по нервам для оценки функционального состояния ЦНС получило название центральной ЭМГ. Поскольку моторная единица является конечным общим путем для всех нервных импульсов, контролирующих скелетную мускулатуру, нарушения двигательного контроля в результате поражений центральной нервной системы вызывают образование патологических импульсов в моторных невронах, которые могут быть зарегистрированы с помощью электрофизиологической техники. Так, например, поверхностная ЭМГ, регистрирующая импульсы от соответствующих пар антагонистических мышц, регистрирует по сути «мобилизацию» отдельных моторных единиц, а микронейрографические исследования оказываются целесообразными при оценке различных типов тремора, включая тремор покоя при болезни Паркинсона, эссенциальный семейный тремор и физиологический тремор. С помощью этих методов церебеллярную атаксию можно отдифференцировать от других видов тремора и от сенсорной атаксии. Астериксис, таким образом, можно отличить от тремора, а также выявить различные типы миоклонуса. Изучение проприоцептивных и экстероцептивных рефлексов способствует дифференциальной диагностике расстройств движения, позволяя отличить спастичность от других видов ригидности. Исследование Н-рефлексов и F -реакций дает информацию относительно возбудимости моторного нейронного пула. Влияние вибрации на Н-рефлекс было использовано для оценки пресинаптического торможения при различных неврологических заболеваниях. Исследования так называемого периода затишья помогли оценить функции проприоцептивных «подводов» к мышечным «осям». Несоответствие информации от мышечных «осей» и от суставных рецепторов может привести к явной «церебеллярной» атаксии у больных с острой воспалительной полиневропатией (синдром Фишера) в результате повреждений в периферической нервной системе. Записи ЭМГ и мигательных рефлексов целесообразны, при документировании клинически скрытых поражений ствола мозга, при множественном склерозе, а также при локализованных компрессионных поражениях на самых ранних стадиях в области тройничного и лицевого нервов вследствие небольших опухолей в задней черепной ямке.

Гистопатология мышцы и нерва

Биопсия мышцы позволяет: 1) отдифференцировать нейрогенный патологический процесс от миопатического; 2) идентифицировать такие специфические мышечные поражения, как мышечная дистрофия или врожденные миопатии; 3) идентифицировать специфические обменные поражения мышц (с применением гистохимических и биохимических методов); 4) диагностировать заболевания соединительной ткани и кровеносных сосудов (например, узелковый периартериит) и инфекционные болезни (например, трихинеллез или токсоплазмоз).

Осуществляют биопсию под местной анестезией. У детей и у взрослых, отягощенных какими-нибудь хроническими заболеваниями, достаточное количество материала для биопсии мышцы может быть получено при пункционной биопсии. При диагностике локализованных, местных патологических процессов (например, миозит или васкулит) может оказаться необходимой открытая биопсия. Во всех случаях мышца, выбранная для биопсии, должна адекватно отражать наличие патологического процесса в ней, а исследовать биоптат необходимо в соответствующей лаборатории. Нецелесообразно проводить биопсию мышцы, только что травмированной электромиографической иглой или перенесшей какое-либо иное болезненное состояние (например, сдавление спинномозгового корешка), поскольку может быть получена недостоверная информация, затрудняющая диагностику.

Гистология нормальной мышцы. На поперечном срезе нормальной мышцы видно большое количество мышечных волокон, сгруппированных в пучки соединительнотканными перегородками (перимизиум), по которым проходят нервные пучки и кровеносные сосуды. Отдельные мышечные волокна заключены в тонкий коллагеновый футляр (эндомизиум), на котором расположена сеть капилляров. Диаметр мышечных волокон в мышцах конечностей взрослого человека составляет 40-80 мкм. Каждое мышечное волокно состоит из миофибрилл, которые погружены в цитоплазму, с расположенными в ней митохондриями и саркоплазматической сетью и содержащую гликоген. Мышечное волокно окружено плазмолеммой (сарколемма) и базальной пластинкой. Мышечные волокна многоядерные (каждое из них по сути представляет собой синцитий), но почти все они оттеснены в субсарколеммиую область. Между базальной пластинкой и плазмолеммой мышечного волокна расположено несколько стволовых клеток или клеток-сателлитов; они являются основным источником миобластов, необходимых для регенерации поврежденных мышечных волокон. Гистохимическое деление мышечных волокон на I и II типы описано выше.

Следует отметить, что число патологических реакций мышцы на повреждение довольно ограниченное.

Денервация, реиннервация . Денервированное мышечное волокно атрофируется, причем в начальных стадиях миофибриллы исчезают в большей степени, чем саркоплазма, содержащая митохондрии, так что гистологически мышечные волокна выглядят «очень темными» и окрашиваются на окислительные ферменты. Денервированные волокна, сжимаемые окружающими нормальными волокнами, становятся изломанными и атрофичными. В начальных стадиях денервации благодаря феномену наложения многих моторных единиц в одной и той же области атрофированные волокна расположены беспорядочно по всей мышце. Сохранившиеся моторные аксоны начинают давать отростки для реиннервации атрофированных мышечных волокон, в конечном итоге образуя группировки волокон по их типам. После отмирания этих увеличенных моторных единиц развивается атрофия волокон по группам (I и II типа). В хронически денервированной и реиннервируемой мышце распределение мышечных волокон в зависимости от диаметра происходит следующим образом: атрофичные денервированные волокна составляют одну популяцию, а иннервированные, нормальные волокна (или гипертрофированные) - другую. В случае феномена мышечной денервации-реиннервации, как правило, бывает трудно установить специфический (нозологический) диагноз или определить специфическую этиологию поражения только на основании данных мышечной биопсии.

Некроз мышечных волокон и их регенерация. Повреждение сарколеммы мышечного волокна способствует проникновению кальция в высокой, экстрацеллюлярной концентрации в среду саркоплазмы с низким содержанием этого иона. Поступление кальция вызывает активизацию нейтральной протеазы, что и начинает процесс протеолиза. Кальций подавляет митохондриальные функции и вызывает гибель митохондрий, приводя тем самым к смерти клетки. Проникающие в этот участок макрофаги фагоцитируют мышечные волокна. Клетки-сателлиты, которые обеспечивают основу для регенерации мышечных волокон, также участвуют практически во всех процессах, сопровождающихся повреждением мышцы. Так, они пролиферируют и «растворяются» для того, чтобы образовать многоклеточные мышечные трубочки, что способствует регенерации мышечных волокон. Регенерирующие мышечные волокна небольшого размера, базофильные благодаря повышенной концентрации РНК, в них заключены крупные везикулярные внутренние ядра. Распределение диаметра мышечных волокон при типичной хронической миопатии характеризуется однотипностью и широтой, что существенно отличается от бимодального распределения этих диаметров в случае денервации-реиннервации мышцы.

Некроз мышечных волокон и их регенерация - это обычная ответная реакция мышцы на повреждение, включая травму, дистрофию Дюшенна, полимиозит и дерматомиозит. В конечном итоге, если некроз протекает хронически, регенерация может «ослабеть», что приведет к прогрессирующей потере мышечных волокон и замене их жировой и соединительной тканью. Различия в распространенности скорости протекания указанных процессов позволяют гистологически дифференцировать мышечные дистрофии, воспалительные миопатии и острый рабдомиолиз.

Структурные изменения в мышечных волокнах. Дегенерация мышечных волокон без выраженного некроза вызывает структурные изменения в отдельных мышечных волокнах. Возникает дезорганизация миофибрилл, а саркоплазма образует «мишеневидные» волокна, появляются кольцевидные перетяжки (как будто часть одного мышечного волокна обнаруживается вокруг другого), центральные «стволики» из некротизированной ткани, тельца в виде клеток и немалиновые тельца. Иногда мышечные волокна напоминают «мышечные трубочки» (центронуклеарная миопатия). Изменения в митохондриях свидетельствуют о нарушениях биохимических процессов в них, а наличие вакуолей позволяет предположить возможность нарушения обмена гликогена или липидов. Очень четко очерченные вакуоли (скопление дегенерирующих фосфолипидов между миофибриллами) наиболее характерны для окулофарингеальной мышечной дистрофии и миозита с вирусными включениями.

Воспалительные изменения. Для полиомиозита и дерматомиозита типична периваскулярная и интерстициальная воспалительная клеточная инфильтрация из лимфоцитов. Происходят также некроз и регенерация мышечных волокон. Иногда на периферии мышечного пучка можно обнаружить атрофию мышечных волокон (перифасцикулярная атрофия), которая бывает достаточно резко выражена и служит индикатором воспалительной миопатии даже в том случае, когда в биоптате мышцы не найдено фокуса воспаления. У больных с коллагенозами в мышечном биоптате выявляют васкулит, а при саркоидозе - гранулемы.

Изменения мышечных волокон, специфичные для определенного типа волокон. Патологическим изменениям могут подвергаться лишь волокна какого-либо одного гистологического типа. Так, чаще всего встречается атрофия мышечных волокон II типа, которая характерна для многих заболеваний, ограничивающих подвижность больного. Она возникает при длительном бездействии определенных мышц, при мышечной и суставной болях и при верхней моторной нейрональной дисфункции. Атрофия мышечных волокон I типа встречается гораздо реже - при миотонической дистрофии, ревматоидном артрите и при некоторых врожденных миопатиях.

Биопсия нерва. Биопсия нерва - достаточно трудно осуществимая процедура - более травматична для больного. Она показана относительно редко и лишь при особых обстоятельствах. Для биопсии обычно выбирают икроножный нерв или поверхностный лучевой нерв в области запястья. Оба эти нерва являются чувствительными, так что при чисто моторных нейропатиях в них может быть не обнаружено никаких патологических изменений. Процедуру биопсии нерва выполняют под местной анестезией, беря кусочки нервной ткани для световой, электронной микроскопии и для разволокнения отдельных нервных волокон. Биопсию нерва осуществляют при: 1) дифференциации между сегментальной демиелинизацией и аксональной дегенерацией; 2) при идентификации воспалительных невропатий и 3) при установлении таких специфических диагнозов, как амилоидоз, саркоидоз, лепра и некоторые метаболические невропатии. Полноценное исследование биоптата может быть проведено лишь в специально оборудованной лаборатории, специализирующейся по заболеваниям периферических нервов. При биопсии нерва чаще сталкиваются с двумя основными патологическими процессами.

Световая микроскопия обычно малоинформативна, так как позволяет выявить лишь самую грубую патологию: васкулит, воспаление, гранулематозную инфильтрацию или скопление амилоида, потерю аксонов, их дегенерацию. Гораздо более информативны электронная микроскопия и исследование отдельных, разволокненных нервных волокон. При некоторых заболеваниях поражаются особые типы нервных волокон; большие миелинизированные волокна поражаются при атаксии Фридрейха, а немиелинизированные волокна - при семейном амилоидозе. Дополнительную информацию может предоставить количественная морфометрия (определение количества волокон и распределения их диаметра).

Сегментарная демиелинизация. При различных патологических состояниях может поражаться либо миелин, либо шванновские клетки, при этом происходит дегенерация миелиновой оболочки, а аксон остается неповрежденным. Процесс восстановления при сегментарной демиелинизации проходит стадию образования необычайно истонченной миелиновой оболочки, которая, однако, в конечном итоге достигает нормальной толщины. И все же даже после восстановления при исследовании отдельных разволокненных нервных волокон можно выявить укороченные или различной длины участки нервного волокна между соседними перехватами Ранвье. Если этот процесс прогрессирует, возникают образования, напоминающие «луковицы», с нервными волокнами, покрытыми тонким слоем миелина и располагающимися в центре концентрической пластинки избыточной цитоплазмы шванновской клетки.

Дегенерация аксона . Смерть тела нервной клетки или части (секции) аксона на любом уровне приводит к дегенерации дистальных частей аксона с вторичной дегенерацией миелиновой оболочки. Если же нервная клетка остается интактной, то проксимально начинается регенерация аксона с образованием своеобразных выростов. Эти нервные «отростки» («пучки») типичны для аксональной дегенеративной и регенеративной невропатий. Чаще всего дегенерация аксонов возникает при токсикозах, наследственных, травматических и ишемических заболеваниях. Для аутоиммунных воспалительных болезней и наследственной патологии характерна сегментарная демиелинизация; при аутоиммунных воспалительных болезнях встречается воспалительная клеточная инфильтрация. При сахарном диабете обнаруживают смешанное поражение - аксональную дегенерацию, сегментарную демиелинизацию наряду с васкулопатией (микроангиопатии). Некоторые специфические гистологические изменения могут указывать на предположительную этиологию невропатии. При иммунофлюоресцентном анализе обнаруживают отложения IgM на связанный с миелином гликопротеид миелина, характерные для IgM -гаммапатий. При амилоидной невропатии в нерве обнаруживают фибриллы (волокна) амилоида. При метахроматической лейкодистрофии и при адреномиелолейкодистрофии в шванновских клетках находят специфические включения.

Биохимические исследования

Некоторые ферменты, в значительных концентрциях содержащиеся в мышечной саркоплазме, при повреждении мышцы могут просачиваться («утекать») в кровь и, таким образом, служить индикаторами мышечного повреждения. Креатинкиназа (КК) - наиболее чувствительный и специфичный в этом отношении тест. В то время как при периферических невропатиях и поражениях нервно-мышечного соединения активность КК в сыворотке крови остается нормальной, при спинальной мышечной атрофии, амиотрофическом боковом склерозе и других заболеваниях моторного нейрона она несколько повышается. В сыворотке крови больных с активной мышечной деструкцией может быть повышена активность аспартатаминотрансферазы (AST , SGOT ), аланинаминотрансферазы (ALT , SGPT ), лактатдегидрогеназы (ЛДГ) и альдолазы. Поскольку активность некоторых из названных ферментов определяют в крови при рутинном скрининговом исследовании, то не так уж редко больного с мышечным поражением впервые идентифицируют по неожиданной для врача высокой активности в крови одного из этих ферментов. Почему при мышечных поражениях так диспропорционально повышается активность именно КК, не совсем ясно. Но тем не менее для оценки состояния больного с нервно-мышечным заболеванием достаточно определить в крови активность именно этого фермента КК. Известны изоэнзимы КК: MM , MB и ВВ, причем ММ преобладает в скелетной мускулатуре, MB в сердечной мышце и ВВ - в мозге. Повышение в крови активности КК-МВ свидетельствует о повреждении сердечной мышцы. Повышенная активность КК при мышечном повреждении обычно обусловлена повышенной активностью ее изоэнзима ММ. Однако у больных с продолжительной мышечной патологией, у атлетов и у других лиц с хронически повышенным уровнем КК в крови пропорция изоэнзима MB в скелетной мускулатуре повышается, вследствие чего повышается и пропорция КК-МВ. Увеличение в крови активности КК, превышающее норму более чем в 10 раз, указывает на деструкцию мышц. Не столь значительное повышение в крови активности КК отличают при многих нервно-мышечных заболеваниях, небольших травмах мышц (например, после электромиографии) у лиц, страдающих психозом или алкоголизмом, при гипотиреозе и гипопаратиреозе, при гипертрофии мышц и в случае носительства некоторых генетических миопатий. У здоровых лиц активность сывороточной КК может повыситься после резкого мышечного напряжения или после травмы мышцы. Обычно уже спустя 6 ч после мышечного перенапряжения в крови повышается активность КК.

Состав мышцы и ее масса. При КТ и ЯМР в мышце четко видны мышечные волокна, жировая и соединительная ткань. Эти методы позволяют дифференцировать мышечную дистрофию от других форм мышечных заболеваний. Однако высокая стоимость названных методов обследования, довольно ограниченные возможности с точки зрения «частоты поперечных срезов» исследуемой конечности, а также малая специфичность получаемых результатов дают основание полагать, что применение КТ и ЯМР при диагностике нервно-мышечных заболеваний должно быть весьма ограниченным. Оценка же общей мышечной массы весьма важна при некоторых метаболических исследованиях. Простое уменьшение мышечной массы без появления мышечной слабости свидетельствует не в пользу нервно-мышечных заболеваний, а скорее указывает на процессы старения, наличие злокачественного новообразования, нарушение питания, патологию печени или почек. Для оценки общей мышечной массы чаще всего прибегают к определению суточной экскреции креатинина с мочой; следует помнить, что экскреция креатинина уменьшается у больных, у которых по тем или иным причинам снижается масса тела. У больных, теряющих массу тела на фоне нервно-мышечных заболеваний, содержание креатинина в сыворотке крови довольно низкое - около 2-5 мг/л. При уменьшении мышечной массы, несмотря на нарушение почечной функции, происходит диспропорционально резкое снижение уровня креатинина в крови больного; у больных же с активной мышечной деструкцией содержание креатинина в крови соответственно резко повышается.

Метаболические и эндокринные исследования. Резкую, обычно остро развивающуюся мышечную слабость могут вызвать гипо- и гиперкалиемия, гипернатриемия, гипо- и гиперкальциемия, гипофосфатемия и гипермагниемия, концентрация калия в сыворотке крови непостоянна, что обусловлено развивающимися ацидозом или алкалозом. Внутриклеточная концентрация калия обычно высокая, так что гемолиз, возможный при взятии крови, часто имитирует завышенное содержание калия в крови. А при остром мышечном повреждении, вызывающем рабдомиолиз, развивается истинная гиперкалиемия. Хотя повышение содержания калия в крови не превышает 0,1 мэкв/л, если, конечно, в сыворотку не попал гемоглобин, как это бывает в случае гемолиза, или если в мочу не попадает миоглобин, как это случается при рабдомиолизе. Мышечная слабость может быть следствием хронической эндокринной патологии - гипо- или гиперфункции щитовидной железы, надпочечников или паращитовидных желез. Нарушения функции щитовидной и паращитовидной желез может вызвать мышечную слабость, даже если нет других клинических проявлений эндокринопатии. Мышечной слабостью также могут проявиться или осложниться такие заболевания, как ревматоидный артрит, системная красная волчанка (СКВ), склеродермия, синдром ревматической полимиалгии. Так что при поиске причин необъяснимой мышечной слабости необходимо провести соответствующие диагностические исследования, направленные на выявление перечисленных выше заболеваний. В подобных случаях мышечная слабость часто бывает вызвана атрофией мышц от бездействия и болями в суставах; воспаление и деструкции мышцы довольно редко служат причиной мышечной слабости.

Тестирование мышцы физической нагрузкой . У больных с мышечной слабостью, обусловленной нарушением потребления энергетического субстрата мышечного сокращения, как правило, снижена толерантность к мышечным усилиям и при последующих нагрузках в мышцах возникают слабость и боль. Большинство нарушений в ферментных системах гликолиза приводит к нарушению в мышце синтеза АТФ из гликогена, следствием чего является уменьшение продукции (или даже отсутствие таковой) молочной кислоты. Больных с такими нарушениями выявляют с помощью определенных упражнений для мышц предплечья с последующим исследованием содержания молочной кислоты в венозной крови. У больных с нарушением метаболизма жирных кислот (дефицит карнитинпальмитинтрансферазы) жирные кислоты с длинной цепью не поступают в митохондрии для последующего бета-окисления, однако продукция в мышцах молочной кислоты происходит нормально, у больных с недостаточностью миоаденилатдеаминазы образование лактата находится в пределах нормы или даже несколько увеличено, но синтез аммиака при мышечной нагрузке нарушен. Определить причину функциональных нарушений в мышце может помочь исследование других мышечных метаболитов и специфических ферментов.

Миоглобинурия. Острая мышечная деструкция, рабдомиолиз, возникает при острых интоксикациях, метаболических нарушениях, при инфекционных заболеваниях, в результате травматического повреждения мышц и сопровождается миоглобинурией. Молекулярная масса миоглобина меньше такового гемоглобина, так что при рабдомиолизе изменяется цвет мочи, а не сыворотка крови. При незначительной миоглобинурии реакция на кровь в моче будет положительной, даже если там нет эритроцитов. Для подтверждения диагноза необходимо специфическим иммунологическим методом исследовать мочу на миоглобин.

Общетерапевтические соображения .

Болезни сердца. Большинство заболеваний скелетной мускулатуры, как правило, сопровождается изменениями и в сердечной мышце. При этом клинически сердечная дисфункция проявляется довольно редко, что можно объяснить малой физической нагрузкой больных, страдающих мышечной слабостью, т. е. требования к сердечной мышце при этом существенно уменьшаются. Довольно специфические электрокардиографические изменения возникают при дистрофии Дюшенна и при дефиците кислой мальтазы у младенцев. У больных с миотонической дистрофией могут возникнуть нарушения сердечной проводимости, включая полную поперечную блокаду сердца. Во всяком случае ЭКГ необходимо сделать всем больным с нервно-мышечной патологией, особенно бальным с миопатиями.

Патология системы органов дыхания . Ослабление функции легких у больных с острыми и хроническими нервно-мышечными заболеваниями может прогрессировать до дыхательной недостаточности. Ранними проявлениями ослабления дыхательной мускулатуры являются снижение максимального экспираторного и инспираторного давлений. Особенно значительно у больных с нервно-мышечными заболеваниями выражена слабость диафрагмы. Поэтому необходимо проверить функцию диафрагмы, проведя исследование функции легких у больных как в положении лежа, так и в положении сидя. У больных со слабостью диафрагмы функциональные легочные нарушения более отчетливо проявляются в положении больного лежа, у них отмечаются также парадоксальные движения брюшной стенки. Больные с хронической дыхательной недостаточностью даже в домашних условиях нуждаются в поддержании дыхания.

Лечебная физкультура . У больных с мышечной слабостью особое значение приобретает лечебная физкультура, так как появившиеся контрактура и вынужденное обездвиживание больного вследствие повреждения тех или иных мышц приводят к резкому снижению физической активности. Упражнения помогут увеличить силу в мышцах, ослабленных болезнью, однако данных в пользу того, что физические упражнения могут способствовать улучшению функциональных способностей больного, мало. С другой стороны, терапевтическая установка больного на преодоление мышечной дисфункции имеет большое психологическое значение, особенно у больных с минимально сохранившейся функцией нижних конечностей и туловища. Упражнения помогут сохранить нормальную костную минерализацию и жизненно необходимые кардиоваскулярные рефлексы.

Диета. Больным с мышечной слабостью показаны определенные диетические ограничения, поскольку их энергетические затраты в калориях существенно уменьшены вследствие малой подвижности и потери мышечной массы. Избыточная же масса тела может еще более ограничить подвижность больного, ухудшить функцию легких и, в частности, их вентиляцию. Если нет признаков явной мальабсорбции витаминов B 12 или Е, назначать их, как и прочие витамины, нецелесообразно, так как они, увы, не играют какой-либо значимой роли при лечении нервно-мышечных заболеваний. Некоторые же витамины в повышенных дозах даже опасны. Это относится, в частности, к витаминам В6, А и D .

Иммобилизация . Больным с дистальной мышечной слабостью в нижних конечностях, особенно при нарушении дорсального сгибания стопы, можно рекомендовать пользоваться ортопедическим аппаратом в области голеностопного сустава, что иногда помогает восстановить почти нормальную походку. При слабости же более проксимальных мышц иммобилизация нижней конечности уменьшает общую подвижность и оправдана только у тех больных, которые совсем не могут стоять и передвигаться самостоятельно. У большинства взрослых больных иммобилизация даже в этих условиях не имеет практического значения, поскольку без посторонней помощи они не могут находиться даже в положении стоя.

Сколиоз . Деформация позвоночника может осложнить течение нервно-мышечного заболевания еще до пубертатного возраста. Это особенно часто случается при дистрофии Дюшенна, спинальной мышечной атрофии и при врожденных миопатиях. Когда же рост длинных костей прекращается, многим подобным больным можно рекомендовать хирургическую коррекцию сколиоза. Противопоказанием для такого лечения является резкое нарушение функционального состояния легких, и больные с ограниченными жизненными перспективами, по-видимому, должны воздержаться от хирургического вмешательства, учитывая его болезненность и риск.

Генетическая оценка ситуации и консультирование . При ведении больного с наследственным мышечным заболеванием необходимо ознакомиться с его родословной, собрать семейный анамнез и разработать соответствующие генетические рекомендации. К сожалению, в анамнезе многих пациентов может не быть никаких указаний на семейный характер заболевания. Это касается, в частности, заболеваний, наследуемых по аутосомно-доминантному типу. К ним относятся болезнь Шарко-Мари-Тута, миотоническая дистрофия и плече-лопаточно-лицевая миопатия, экспрессивность указанных заболеваний очень вариабельна. Доступность хромосомных маркеров для проведения анализа «сцепления» позволила выявлять носителей соответствующих генов, осуществлять антенатальную диагностику и диагностику на ранних стадиях заболевания при целом ряде наследственных нервно-мышечных нарушений, например при дистрофиях Дюшенна и миотонической. Поскольку при своевременной диагностике таких заболеваний, как периодический паралич, миотония и некоторые метаболические миопатии, пациенту можно помочь, а при злокачественной гипертермии, например, существуют превентивные меры, как можно более раннее установление диагноза приобретает первостепенное значение. Нередко по истории болезни нельзя оценить наследственный анамнез. Непосредственный осмотр родственников больного или ознакомление с ними по фотографиям иногда помогает диагностировать лицевые или иные проявления заболевания, а также выявить лиц с «мягкими» формами указанной наследственной патологии.

T.P. Harrison. Principles of internal medicine. Перевод д.м.н. А. В. Сучкова, к.м.н. Н. Н. Заваденко, к.м.н. Д. Г. Катковского

Поражение n. medianus на любом его участке, приводящее к болям и отечности кисти, расстройству чувствительности ее ладонной поверхности и первых 3,5 пальцев, нарушению сгибания этих пальцев и противопоставления большого пальца. Диагностика проводится неврологом по результатам неврологического осмотра и электронейромиографии; дополнительно при помощи рентгенографии, УЗИ и томографии исследуют костно-мышечные структуры. В лечение включают обезболивающие, противовоспалительные, нейрометаболические, сосудистые фармпрепараты, ЛФК, физиолечение, массаж. По показаниям проводятся хирургические вмешательства.

Общие сведения

Невропатия срединного нерва встречается достаточно часто. Основной контингент заболевших - лица молодого и среднего возраста. Наиболее распространенные места поражения срединного нерва соответствуют зонам его наибольшей уязвимости - анатомическим туннелям, в которых возможно сдавление (компрессия) ствола нерва с развитием т. н. туннельного синдрома. Самым часто встречающимся туннельным синдромом n. medianus является синдром запястного канала - сдавление нерва при его переходе на кисть. Средняя заболеваемость в популяции составляет 2-3%.

Вторым по распространенности местом поражения срединного нерва выступает его участок в верхней части предплечья, идущий между мышечными пучками круглого пронатора. Такая невропатия носит название «синдром круглого пронатора». В нижней трети плеча n. medianus может быть сдавлен аномальным отростком плечевой кости или связкой Струзера. Его поражение в этом месте носит название синдром ленты Струзера, или синдром супракондилярного отростка плеча. В литературе также можно встретить синонимичное название - синдром Кулона-Лорда-Бедосье, включающее имена соавторов, впервые описавших этот синдром в 1963 г.

Анатомия срединного нерва

N. medianus формируется при соединении пучков плечевого сплетения, которые, в свою очередь, начинаются от спинномозговых корешков С5–Th1. После прохождения подмышечной зоны идет рядом с плечевой артерией вдоль медиального края плечевой кости. В нижней трети плеча уходит глубже артерии и проходит под связкой Струзера, при выходе на предплечье идет в толще круглого пронатора. Затем проходит между мышцами-сгибателями пальцев. На плече срединный нерв не дает ветвей, к локтевому суставу от него отходят сенсорные ветви. На предплечье n. medianus иннервирует практически все мышцы передней группы.

С предплечья на кисть n. medianus переходит через карпальный (запястный канал). На кисти он иннервирует мышцы противопоставляющую и отводящую большой палец, частично мышцу, сгибающую большой палец, червеобразные мышцы. Сенсорные ветви n. medianus иннервируют лучезапястный сустав, кожу ладонной поверхности радиальной половины кисти и первых 3,5 пальцев.

Причины невропатии срединного нерва

Невропатия срединного нерва может развиться вследствие травмы нерва: его ушиба, частичного разрыва волокон при резанных, рваных, колотых, огнестрельных ранах или повреждении отломками костей при переломах плеча и предплечья, внутрисуставных переломах в локтевом или лучезапястном суставах. Причиной поражения n. medianus могут быть вывихи или воспалительные изменения (артроз , артрит , бурсит) указанных суставов. Компрессия срединного нерва в любом его отрезке возможна при развитии опухолей (липом , остеом , гигром , гемангиом) или формировании посттравматических гематом . Невропатия может развиваться вследствие эндокринной дисфункции (при сахарном диабете , акромегалии , гипотиреозе), при заболеваниях, влекущих за собой изменения в связках, сухожилиях и костных тканях (подагре , ревматизме).

Развитие туннельного синдрома обусловлено компрессией ствола срединного нерва в анатомическом туннеле и нарушением его кровоснабжения вследствие сопутствующего сдавления питающих нерв сосудов. В связи с этим туннельный синдром также носит название компрессионно-ишемического. Наиболее часто невропатия срединного нерва такого генеза развивается в связи с профессиональной деятельностью. Например, синдромом запястного канала страдают маляры, штукатуры, плотники, упаковщики; синдром круглого пронатора наблюдается у гитаристов, флейтистов, пианистов, у кормящих женщин, которые длительно держат спящего ребенка на руке в положении, когда его голова находится на предплечье матери. Причиной туннельного синдрома может выступать изменение анатомических структур, образующих туннель, что отмечается при подвывихах, повреждении сухожилий , деформирующем остеоартрозе , ревматическом заболевании околосуставных тканей . В редких случаях (менее 1% во всей популяции) компрессия обусловлена наличием аномального отростка плечевой кости.

Симптомы невропатии срединного нерва

Невропатия срединного нерва характеризуется выраженным болевым синдромом. Боль захватывает медиальную поверхность предплечья, кисть и 1-3-й пальцы. Часто она имеет жгучий каузалгический характер. Как правило, боли сопровождаются интенсивными вегетативно-трофическими нарушениями, что проявляется отечностью, жаром и покраснением или похолоданием и бледностью запястья, радиальной половины ладони и 1-3-го пальцев.

Наиболее заметными симптомами двигательных нарушений являются невозможность собрать пальцы в кулак, противопоставить большой палец, согнуть 1-й и 2-й пальцы кисти. Затруднено сгибание 3-го пальца. При сгибании кисти наблюдается ее отклонение в локтевую сторону. Патогномоничным симптомом выступает атрофия мышц тенора. Большой палец не противопоставляется, а становиться в один ряд с остальными и рука приобретает схожесть с обезьяньей лапой.

Сенсорные нарушения проявляются онемением и гипестезией в зоне иннервации срединного нерва, т. е. кожи лучевой половины ладони, ладонной поверхности и тыла концевых фаланг 3,5 пальцев. Если нерв поражен выше запястного канала, то чувствительность ладони обычно сохранена, т. к. ее иннервация осуществляется ветвью, отходящей от срединного нерва до его входа в канал.

Диагностика невропатии срединного нерва

В классическом варианте невропатия срединного нерва может быть диагностирована неврологом в ходе тщательного неврологического осмотра. Для выявления двигательной недостаточность пациента просят выполнить ряд тестов: сжать все пальцы в кулак (1-й и 2-й пальцы не сгибаются); поскрести по поверхности стола ногтем указательного пальца; растягивать лист бумаги, взяв его лишь первыми двумя пальцами каждой руки; вращать большими пальцами; соединить кончики большого пальца и мизинца.

При туннельных синдромах определяется симптом Тиннеля - болезненность по ходу нерва при постукивании в месте компрессии. С его помощью можно диагностировать место поражения n. medianus. При синдроме круглого пронатора симптом Тиннеля определяется при постукивании в районе табакерки пронатора (верхняя треть внутренней поверхности предплечья), при синдроме запястного канала - при постукивании по радиальному краю внутренней поверхности запястья. При синдроме супракондилярного отростка боль возникает, когда пациент одновременно со сгибанием пальцев разгибает и пронирует предплечье.

Уточнить топику поражения и отдифференцировать невропатию n. medianus от плечевого плексита , вертеброгенных синдромов (радикулита , грыжи диска, спондилоартроза , остеохондроза , шейного спондилеза), полиневропатии помогает электронейромиография . С целью оценки состояния костных структур и суставов проводится рентгенография костей , МРТ, УЗИ или КТ суставов. При синдроме супракондилярного отростка при рентгенографии плечевой кости выявляется «шпора», или костный отросток. В зависимости от этиологии невропатии в диагностике принимают участие

1. Что такое ЭМГ?

ЭМГ, или электромиография,- это особый тип исследования нейрогенных механизмов, контролирующих работу мышцы (моторной единицы), при этом исследовании регистрируется электрическая мышечная активность в покое и при сокращении Кроме того, это общий термин, охватывающий целый спектр исследований, используемых в области медицины, называемой электродиагностикой

2. Что такое моторная единица?

Это анатомическая единица функции для моторной части периферической нервной системы Она включает моторный нейрон, тело которого находится в передних рогах спинного мозга, его аксон, нервно-мышечное соединение и мышечные волокна, ин-нервируемые периферическим нервом Специалист по электродиагностике использует ЭМГ, определение скорости проведения нервных импульсов (СПНИ), повторную стимуляцию и другие электрофизиологические тесты для оценки состояния отдельных компонентов моторной единицы

3. Что такое иннервационное соотношение?

Аксону каждого моторного нейрона соответствует различное число нервных окончаний и мышечных волокон В зависимости от конкретных требований, предъявляемых к контролю мышечной деятельности, это соотношение может быть достаточно низким или крайне высоким Иннервационное соотношение для мышц глазного яблока обычно составляет 1 3, что объясняется необходимостью точного контроля движений, обеспечивающих бинокулярное зрение В противоположность этому иннервационное соотношение икроножной мышцы может достигать 1 2000, так как большинство движений, связанных с подошвенным сгибанием стопы, являются относительно грубыми и требуют больше силы, чем точности

4. Назовите другие электродиагностические методы.

Исследование скорости проведения нервного импульса, или исследование проведения по нерву, определяет амплитуду и скорость распространения сигналов по периферическим нервам

Исследование с повторной стимуляцией используется для оценки состояния нервно-мышечного соединения (например, при миастении)

Метод соматосенсорных, вызванных потенциалов определяет сохранность проведения по волокнам спинного и головного мозга

К другим, реже применяемым исследованиям относятся ЭМГ единичного нервного волокна, метод моторно-вызванных потенциалов и метод стимуляции корешков спинного мозга

5. Каковы клинические показания к проведению ЭМГ, исследованию СПНИ?

ЭМГ используется в тех случаях, когда необходимо определить локализацию и тяжесть неврологических заболеваний и/или подтвердить наличие миопатических расстройств СПНИ позволяет уточнить анатомическую локализацию патологического процесса в двигательном или чувствительном звеньях периферической нервной системы, а также оценить тяжесть патологии аксонов и выраженность деми-елинизации

6. Какие показатели регистрируются при обычной ЭМГ?

Мышца в состоянии расслабления: в норме электрическая активность введения состоит в кратковременном разряде одиночных мышечных волокон в ответ на введение ЭМГ-иглы Если выраженность данного явления не чрезмерная, она не указывает на наличие патологии Спонтанной активности вследствие непроизвольной разрядки отдельных моторных нейронов (фибрилляция, положительные острые зубцы) у мышцы в состоянии расслабления быть не должно

Мышца в состоянии слабого сокращения: обследуемый слегка напрягает мышцу, что вызывает появление единичных потенциалов действия моторной единицы (ПДМЕ) В норме зубцы ПДМЕ имеют продолжительность 5-15 мс, 2-4 фазы (обычно 3) и амплитуду 0,5-3 мВ (в зависимости от конкретной мышцы)

Мышца в состоянии максимального сокращения: обследуемый максимально напрягает мышцу В норме в процесс активации вовлекается значительное число моторных единиц, что приводит к наложению ПДМЕ друг на друга и исчезновению исходной изолинии Это явление получило название нормальной, или "полной", интерференции

7. Что такое инкрементный ответ?

Как чувствительные, так и двигательные компоненты нервной системы функционируют по принципу "все или ничего" Например, при активации тела нейрона, находящегося в передних рогах спинного мозга и входящего в состав одной моторной единицы, происходит деполяризация всей моторной единицы Градиенты, или значения, сенсорного и моторного ответов оцениваются и контролируются ЦНС путем прогрессивного добавления инкрементных ответов В частности, при активации одной моторной единицы изменение мышечного тонуса может быть минимальным Если же в процесс вовлекаются другие моторные единицы, тонус мышцы возрастает до видимого сокращения с прогрессирующим увеличением силы. Оценка количества задействованных моторных единиц является важным элементом обследования, требующим от специалиста по электромиографии как зрительных, так и слуховых навыков и тренировки.

8. Как по электромиограмме можно различить фасцикуляцию, фибрилляцию и

положительные острые зубцы?

Фасцикуляция - это непроизвольная импульсация единичного моторного нейрона и активация всех иннервируемых им мышечных волокон. Она проявляется спонтанной электрической активностью расслабленной мышцы на электромиограмме и клинически - в виде кратковременных неритмичных подергиваний мышцы. Данный признак характерен для бокового амиотрофического склероза.

Фибрилляция - это непроизвольные сокращения отдельных моторных единиц. Сокращения мышцы целиком, и соответственно движения, при этом не происходит. Клинически фибрилляция может быть заметна под кожей и напоминает фасцикуляцию. Наличие фибрилляции свидетельствует о денервации. В ее основе лежит спонтанная активация мышечных волокон, на поверхности которых имеется увеличенное количество рецепторов к ацетилхолину как следствие денервации (закон Кэннона ). При любом поступлении ацетилхолина извне происходит сокращение мышечных волокон, проявляющееся электрической активностью по типу спонтанной фибрилляции на электромиограмме расслабленной мышцы.

Положительные острые зубцы также наблюдаются при денервации в виде направленных вниз зубцов на электромиограмме расслабленной мышцы, в противоположность направленным вверх зубцам, характерным для фибрилляции.

9. Чем отличается нормальная электромиограмма от таковой денервированной мышцы?

Следует помнить, что фибрилляция и положительные острые зубцы на электромиограмме расслабленной мышцы появляются лишь к 7-14-му дню от момента дегенерации аксона. Процесс полной реиннервации денервированной мышцы, характеризующейся большими, полифазными потенциалами действия моторной единицы, может продлиться 3-4 мес.

10. Чем отличается нормальная электромиограмма от таковой при патологии мышц?

ЭМГ может иметь нормальный вид у 30 % больных с миопатией невоспалительного характера. Миозит (например полимиозит) вызывает как невропатические, так и миопатические изменения на ЭМГ. Появление на ЭМГ фибрилляций и положительных острых зубцов, характерных для денервации, обусловлено вовлечением в воспалительный процесс нервных окончаний в мышцах. Мышечные волокна также поражаются при воспалении, что приводит к появлению типичных для миопатического процесса низкоамплитудных ПДМЕ.

11. Выше или ниже амплитуда потенциала действия сенсорного нерва (ПДСН) амплитуды нормального ПДМЕ?

Величина ПДСН зависит от размера и доступности дистальных нервов. Он колеблется от 10 до 100 мкВ, что составляет около "/20 амплитуды нормального ПДМЕ.

12. Одинакова ли нормальная скорость проведения нервных импульсов (СПНИ) на разных участках нерва?

СПНИ различается в зависимости от нерва и участка нерва. В норме проведение по проксимальным отделам нерва быстрее, чем по дистальным. Этот эффект обусловлен более высокой температурой в туловище, приближающейся к температуре внутренних органов. Кроме того, нервные волокна расширяются в проксимальном отделе нерва. Отличия в СПНИ наиболее заметны на примере нормальных значений СПНИ для верхних и нижних конечностей, соответственно 45-75 м/с и 38-55 м/с.

13. Почему при электродиагностическом исследовании регистрируется температура?

СПНИ для чувствительных и двигательных нервов изменяется на 2,0-2,4 м/с при снижении температуры на 1 °С. Эти изменения могут оказаться значительными, особенно в холодных условиях. При пограничных результатах исследования уместным мог бы быть следующий вопрос лечащего врача: "Какова была температура больного во время исследования и согревалась ли конечность перед измерением СПНИ?". Недоучет последнего положения может привести к ложноположительным результатам и ошибочной диагностике туннельного синдрома запястного канала или генерализо-ванной сенсорно-моторной невропатии.

14. Что такое Н-рефлекс и зубец F? Каково их клиническое значение? Н-рефлекс является электрической основой ахиллова рефлекса и отражает целостность афферентно-эфферентной дуги сегмента S1. Нарушения Н-рефлекса возможны при невропатиях, Sl-радикулопатиях и мононеврите седалищного нерва.

Зубец F - это отсроченный моторный потенциал, следующий за нормальным ПДМЕ, который представляет собой антидромный ответ на избыточную стимуля-

цию двигательного нерва. Зубец F регистрируется на любом периферическом двигательном нерве и дает исследователю информацию о состоянии проксимальных отделов нерва, так как возбуждение распространяется сначала проксимально, а затем возвращается вниз по нерву и вызывает сокращение мышцы.

15. Как исследуются чувствительный и двигательный компоненты периферической нервной системы?

Определение скорости проведения по чувствительным и двигательным нервам является основой оценки состояния периферических нервов. Амплитуда зубцов, момент их возникновения и достижения пика сравниваются со стандартизированными нормальными величинами и значениями, полученными на противоположной конечности. Зубцы образуются в результате суммации инкрементной деполяризации отдельных аксонов. Поздние явления (зубцы F и Н-рефлекс) позволяют оценить состояние проксимальных, анатомически сложно достижимых отделов периферической нервной системы. Данные исследования также проводят для определения скорости проведения импульсов по длинным участкам нервного волокна. В частности, выявление зубцов F служит важным скрининговым исследованием в диагностике синдрома Гийена-Барре. К реже используемым методикам оценки периферических нервов относятся соматосенсорные вызванные потенциалы, дерматомные соматосенсорные вызванные потенциалы и выборочная стимуляция нервных корешков.

16. Какие заболевания поражают периферические нервы?

В функциональном отношении периферические нервы берут свое начало вблизи межпозвоночных отверстий, где соединяются чувствительные и двигательные волокна. Поражение периферических нервов на наиболее проксимальном уровне имеет форму радикулопатии (радикулита) и вызывается сдавлением нервных корешков грыжевым выпячиванием межпозвоночного диска или костными разрастаниями. Поражение сплетений в результате заболевания или травмы бывает на уровне верхней (плечевого сплетения) или нижней (поясничная или пояснично-крестцовая плексопатия) конечностей.

Заболевания периферических нервов могут быть врожденными или приобретенными. К врожденным нарушениям относятся наследственные сенсорные и моторные невропатии (например, болезнь Шарко-Мари-Тута типа I и II). Приобретенные состояния включают невропатические расстройства, такие как при диабете, а также вследствие интоксикации и метаболических нарушений.

Локальное ущемление нерва происходит, в частности, при туннельном синдроме запястного канала, невропатии локтевого нерва и туннельном синдроме тарзаль-ного канала. Для специалиста по электродиагностике важно хорошо собрать анамнез еще до проведения исследования.

17. Каковы три основных типа травматического повреждения нерва?

Существуют три степени повреждения нерва, первоначально описанные Седдоном (Seddon):

1. Невропраксия - это функциональная потеря проведения без анатомических изменений в аксоне. Возможна демиелинизация, однако по мере ремиелинизации СПНИ возвращается к исходной.

2. Аксонотмезис - это нарушение целостности аксона. При этом в дистальном отделе происходит валлериановская дегенерация. Восстановление целостности, зачастую не полное, обеспечивается врастанием аксона со скоростью 1-3 мм/сут.

3. Нейротмезис представляет собой полный анатомический перерыв нерва и окружающих его соединительнотканных оболочек. Регенерация часто не происходит. Восстановление при данной степени повреждения возможно лишь хирургическими методами.

18. Возможно ли сочетание трех типов травматического повреждения нерва?

Невропраксия и аксонотмезис часто развиваются в результате одной травмы. Если сдавление пораженного участка нерва устраняется, восстановление обычно происходит в два этапа. В течение первого, относительно короткого этапа разрешается нев-ропраксия. Второй этап восстановления, занимающий недели или месяцы, заключается во врастании аксона.

19. Как по ЭМГ и СПНИ можно отличить демиелинизирующую периферическую

нейропатию от аксональной периферической нейропатии? Демиелинизирующая нейропатия характеризуется умеренным или выраженным замедлением моторного проведения с временной дисперсией ПДМЕ, нормальными дистальными амплитудами, уменьшенными проксимальными амплитудами и удлиненным дистальным латентным периодом. Аксональные нейропатии проявляются небольшим замедлением СПНИ с низкими в целом амплитудами ПДМЕ при стимуляции во всех точках. Признаки денервации на ЭМГ заметны в ранних стадиях при аксональных нейропатиях и лишь на поздних этапах демиелинизирующих нейропатии, когда начинается дегенерация аксонов.

20. Какие системные заболевания вызывают преимущественно демиелинизирующую периферическую нейропатию? Какие - аксональную периферическую нейропатию?

Периферические полинейропатии при системных заболеваниях могут быть классифицированы как: (1) острые, подострые или хронические по своему началу; (2) поражающие преимущественно сенсорные или моторные нервы; и (3) вызывающие аксональные или демиелинизирующие изменения. Следует отметить, что при большинстве аксональных нейропатии со временем происходит дегенерация миелина.

Характерные полинейропатии при системных заболеваниях

С - сенсорные; СМ - сенсорно-моторные; М - моторные. В дополнение к указанным заболеваниям полинейропатию способны вызвать некоторые лекарственные препараты и токсины.

21. Как ЭМГ и исследование СПНИ используются для диагностики туннельного синдрома запястного канала и компрессии локтевого нерва в области локтевого сустава?

Синдром запястного канала (СЗК) - наиболее часто встречающийся туннельный синдром, поражающий 1 % всего населения СПНИ снижена у 90-95 % больных Латентный период потенциала действия сенсорной составляющей срединного нерва ("ладонная задержка") увеличивается в два раза чаще, чем таковой моторной составляющей, хотя по мере прогрессирования заболевания моторный латентный период также изменяется Применение игольной ЭМГ играет ограниченную роль, но может выявить признаки де-нервации мышц возвышения большого пальца, что указывает на позднюю стадию СЗК При компрессии локтевого нерва в области локтевого сустава СПНИ по двигательным и чувствительным нервам снижена в 60-80 % случаев ЭМГ помогает определить степень денервации мышц кисти и предплечья, иннервируемых локтевым нервом

22. Что такое синдром "двойного сдавления"?

О синдроме "двойного сдавления" говорят тогда, когда туннельный синдром запястного канала сочетается с дегенеративным поражением шейного отдела позвоночника Первое сдавление нерва происходит на уровне корешков шейного отдела, вызывая нарушение аксоплазматического тока как в афферентном, так и в эфферентном направлениях Место второго сдавления, причины еще одного физиологического препятствия по ходу аксона, расположено более дистально, как правило в области запястного канала Данный синдром, хотя и фигурирует в заключениях электромиографии, с трудом поддается количественной оценке и диагностике в клинических условиях

23. Какие другие заболевания можно отдифференцировать от распространенных периферических нейропатий с помощью ЭМГ и СПНИ?

ПЕРИФЕРИЧЕСКИЕ НЕЙРОПАТИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ДИАГНОЗ

СЗК Синдром круглого пронатора

Другие области сдавления срединного нерва Компрессия локтевого нерва в области Радикулопатия С в

локтевого сустава Поражение плечевого сплетения

Парез лучевого нерва Радикулопатия С 7

Поражение надлопаточного нерва Радикулопатия С 5 -С 6

Парез малоберцового нерва Радикулопатия Ц-Ц

Поражение бедренного нерва Радикулопатия L 3

24. Что дает ЭМГ для диагностики и прогнозирования течения миастении, миото-

нической дистрофии и паралича Белла (Bell)?

Миастения. Медленная повторная стимуляция двигательных нервов с частотой 2-3 Гц выявляет снижение моторного ответа на 10 % у 65-85 % больных ЭМГ отдельного волокна, измеряющая задержку в передаче импульса между нервными окончаниями и соответствующими им мышечными волокнами, обнаруживает отклонение от нормы у 90-95 % больных

Миотоническая дистрофия. ПДМЕ на ЭМГ колеблются по амплитуде и частоте и акустически напоминают звук "подводного взрыва"

Паралич Белла. СПНИ по лицевому нерву, выполненная через 5 дней от начала заболевания, дает прогностическую информацию о вероятности выздоровления Если к этому моменту амплитуды и латентные периоды имеют нормальные значения, прогноз в отношении выздоровления отличный

Избранная литература

Ball R D Electrodiagnostic evaluation of the peripheral nervous system In DeLisa J A (ed) Rehabilitation Medicine Principles and Practice, 2nd ed Philadelphia, J В Lippmcott, 1993, 269-307

MacCaen I C (ed) Electromyography A Guide for the Referring Physician Phys Med Rehabil Clm North Am, 1 1-160,1990

Durmtru D Electrodiagnostic Medicine Philadelphia, Hanley & Belfus, 1995

Goodgold J , Eberstem A (eds) Electrodiagnosis of Neuromuscular Diseases, 3rd ed Baltimore, Williams &Wilkins, 1983

Johnson E W (ed) Practical Electromyography Baltimore, Williams & Wilkms, 1980

Kimura J (ed) Electrodiagnosis in Diseases of Nerve and Muscle Principles and Practice, 2nd ed Philadelphia, F A Davis, 1989

Robinson L R (ed) New Developments in Electrodiagnostic Medicine Phys Med Rehabil Clm North Am , 5(3) 1994

Weichers D О, Johnson E W Electrodiagnosis In Kottke F J , Lehmann J F (eds) Krusen"s Handbook of Physical Medicine and Rehabilitation, 4th ed Philadelphia, W В Saunders, 1990,72-107